ISSN: 9772477798001

Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01
www.jmecs.org/volla

Improvement of LDPC Forward Error Correction Capability
and Computation Time Based on FPGA Implementation

A. Tarigan, R. Purnamasari, and E. M. Saputra*
School of Electrical Engineering, Telkom University, Bandung, 40287, Indonesia

Abstract

LDPC is one of channel coding technique which can achieve nearest limit of Shannon’s capacity. The
focus of this paper is to improve the limitation of LDPC bit flipping algorithm for error correcting
process in DVB-S2. This work proposed message passing as the error correcting algorithm and used
FPGA Cyclon II for the implementation. This paper worked with two different types of matrices. They
were matrix (8, 16) and matrix (24, 48). Matrix (24,48) had w.= 4 and w,= 8, and matrix (8, 16) had w.=
2 and w,= 4. The results of this research would present the capability of message passing algorithm and
the use FPGA Cyclon II's resources for this algorithm. Moreover, this research would prove message

A-10

passing algorithm can provide more than one bit error correction.

Keywords: Error Correction; FPGA; LDPC; Matrix; Message passing;

1. Introduction

In recent years, “Low Density Parity Check™ or
LDPC becomes more popular, as a channel coding
technique, due to high demands of good quality of
service. LDPC was originally found by R.G.Gallager
in 1962. This technique has capability which is
known as the closest technique that can reach
maximum limit of Shannon’s capacity. Moreover,
LDPC has low complexity for hardware
implementation and suitable for recent information
technology’s market which need large bandwidth,
high reliability, and good capability for facing bad
channel noise [1]. Nowdays, there are many
standards and researches which use LDPC as their
channel coding technique.

Recently, LDPC technique has been used for
several standards such as WiMax, WPAN, DVB-T2,
and DVB-S2. As example at WPAN sector, the
LDPC decoder has been used to support multiple
code rates for IEEE 802.15.3c¢ [2]. In the multi-
Gbit/s research, it used LDPC as its decoder [3]. It
is also used for MIMO decoder [4]. Even digital
video broadcasting technology uses LDPC for its
inner channel encoding [5,6,7]. The recent research
implemented the LDPC technique as a DVB-S2
decoder on FPGA board [5]. The research used 6 x
12 LDPC matrix, code rate "2, and bit flipping
algorithm in the decoder block [5]. As the result, it
only needed minimum resources of FPGA board [5].

The bit flipping algorithm has two
limitiations[5]. The first problem is about the big
amount of time in the computation process and the
possibility of unlimited loop. The second problem is
that the bit flipping algortihm can only correct one
bit error at the codeword. Based on that limitations,
this research tried to reduce the computation time in
the bit flipping algorithm and improve the possibility
to correct more than one bit error at the codeword.

VOL. 1 NO. 1, 2015

The message passing algorithm has the
capability to work in the parallel error correction
process. With big sparses in the LDPC matrix, it
would make the algorithm to have more capabilities
in error correction.

The bigger sparse of LDPC matrix will give
more capability in the error correction process [1,8,9]
On the other hand, FPGA has resources limitation.
The first objectivity of this research tried to design
and to balance the use of LDPC matrix with the
FPGA resources. Short computation process would
be the next challange. The balance of the good design
and the short computation time were also needed in
this. The third objectivity was to change the design
into VHDL codes and to avoid unconnected schemes.
The last objectivity was to test the capability of the
design in the use of FPGA’s resources and the error
correction capabilities.

In this research, the matrices which used were
matrix (8,16) and matrix (24,48). Both of matrices
has the same code rate. The code rate is 2. But, the
differences of both matrices were in weight of
column and weigth of row.

The results of this research showed that the
using of message passing algorithm could do more
than one bit error correction and the computation
time only took 13 clocks or 260 ns. The
impelementation schemes would be done on FPGA
Cyclon II board. For synthesizing, Quartus II 12.1
web edition would be used as the interface.

1010000000000101
1100000000001010
0010100001010000
0001010100100000
0100001010010000
0001101000001000
0000010001000110
0000000110100001

Fig 1. Parity Check Matrix (8, 16) Regular LDPC
Representation.

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

This paper consisted of five sections. The first
sections is about the background. Section 2 shows
the overview of LDPC, message passing algorithm,
and the purpose of using the matrices and the
algorithm. Section 3 discusses about the system
models. Section 4 presents the results of the
implementation. Section 5 presents the conlusion.

2. LDPC and Message Passing Algorithm

This section will discuss about the LDPC parity
check matrix and the message passing algorithm.
2.1 LDPC Parity Check Matrix

Low Density Parity Check technique is still in
part of linear block coding. Although it’s the part of
linear block, LDPC matrix is different from linear
block code matrix or hamming code matrix. At the
linear block code, the matrix will depend by the
weight or the total numbers of bits ‘1°. It means that
linear block code matrix will contain more numbers
of bits "1’ than the amount of the sparses. On the
other hand, LDPC matrix has more sparses [1,8].
Because of the dependence of the sparse, LDPC is
also called low density matrix.

LDPC matrix has two types of weights. These
are the weight of the coloum (w.) and the weight of
the row (w:) [1,8]. The weight of coloum represents
the numbers of ‘1’ in each of the coloum [1,3, 4].
The weight of row represents the numbers of “1° in
each of the row [1,8]

LDPC matrix can be categorized into two
different types of matrix, regular and irregular [3.4].
The regular matrix is the matrix which has a constant
weight in its rows and its coloumns [8,9]. The
irregular matrix is the opposite of the regular matrix.
The irregular matrix contains varied weight in its
rows and its coloumns [8,9]. Due to minimum
resources of FPGA Cylone II, this research used
regular LDPC matrix which has lower complexity
and needs less resources of FPGA board for
implementation compared to the irregular; However,
as a consequence, the use of the regular matrix could
not achieve the maximum capability of the LDPC
decoder.

LDPC matrices which used in this research
were regular LDPC matrix (8,16) and regular LDPC
matrix (24,48). Both of the matrices had code rate
¥ . The bits ‘1’ were placed randomly in the matrix.

The illustrations figure 1 and 2 show matrix (8,16)
and matrix (24,48) in the matrix representations and
tanner graph representations. Matrix (8, 16) has w, =
2 and w; = 4. Because of the weight, in tanner graph
representation, every variable nodes of matrix (8,16)
connects with two parity nodes. And, each of parity
nodes connects with four variable nodes. Differently
from matrix (8,16), matrix (24, 48) has we = 4 and w,
= 8. The connections between variable nodes and
parity nodes are different too. Each variable nodes
connects with four parity nodes. And, each of parity
nodes connects with eight variable nodes.

VOL. 1 NO. 1, 2015

Fig 2. Tanner Graph Representation Matrix (8, 16)
Regular LDPC Representation.

Matrix (8,16) has the minimum requirement to
fullfill the requirement of LDPC matrix, but it is still
not the best matrix to be used in implementation.
This kind of matrix would be good to be
implemented in the low resource hardware. The
Gallager’s suggestion for good LDPC matrix was the
matrix which has w, < 3 and w; < w.[1]. Because of
the limitation of FPGA’s resources, bigger matrix
would not able to be implemented. For this reason,
Matrix (24,48) has achieved minimum requirement
of Gallager sugesstion to be called as the good LDPC
matrix.

The research would compare both capability
and resources utilization of each matrix to one
another. The comparison results would provide some
suggestions for system developer for developing his
own suitable LDPC decoder system.

2.2 LDPC Message Passing Algorithm

Both of message passing algorithm and bit
flipping algorithm has same basic process. Both of
them work in the exchange of information between
check nodes and variable nodes. But, the bit flipping
algorithm has some vulnerability. It takes big amount
of computation time. In it process, the bit flipping
would check all of the bits in the codeword one by
one (from the first bit until the last bit). It would take
a lot of time. Moreover, the error correction process
might produce infinite loops due to undecide true
codeword. In addition, the last research [5] showed
that the algorithm could only correct one bit error.
Message passing algorithm has solutions for all of
this limitations.

The simultaneous work of variable nodes and
check nodes [8,9,10], the variable nodes and the
check nodes decide the true codeword at the same
time, makes the computation time shorter than the bit
flipping. These are few steps of error correction
process of message passing algorithm.

At the first, all of variable nodes receive
mformation or the codeword from channel [9]. The
first state is also known as the initialization process.
The information which come from the channel is the
corrupted version of the original codeword. At the
second, variable nodes send all of the information,
which it has received, to its adjacent check nodes [9].

A-11

A-12

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

For example, at matrix (8,16), variable nodes c0 will
send the information to parity nodes fl and f2. This
state is also known as variable to parity check
process. At the third, check nodes will do
calculations to decide whether the information is
correct one or not. At this step, each check node will
do modulo-2 operation to all of its adjacent nodes
value [9]. If the result of modulo-2 operation is ‘1°,
parity nodes will inverse its values [9]. At the fourth,
check nodes send the calculation results back to
variable nodes [9]. Example, the parity check fl
sends all of the results to c0, c2, ¢13, and c15. At the
fifth state, variable nodes will decide the correct
codeword. At decision process, the variable nodes
will decide the true value by comparing the values
between channel and the related check nodes[9]. The
major value will be decided as the true value.

At the last, the message passing algorithm does
the rechecking process. This process is same as the
second step. If the requirement of true codeword has
been reached, the process would be stopped and the
true codeword would be presented. But, if the result
has not yet been fullfilled, the message passing will
repeat all over the process again. The full
explanations about these process had been explained
by B.M. Leiner [9].

All of the error detectors have decision regions
which help the detector to decide correct version of
the codeword from the output of channel [8]. At
linear block code technique, big size matrix would
make the error correction process better. It means
that each of linear block code matrix has its
limitation in correcting errors. It is caused by the
capability of its decision regions [8]. It would be
same in the LDPC. If the LDPC has bigger size and
more amounts of sparse bits, then the better of error
correction process would become. It means that the
bigger size matrix has better decision regions.

Both of variable nodes and check nodes have
function to decide the true codeword from the error
one, but the most important part is happen in the
check nodes calculations process. The reason is
because only in this process all of the bits in the
codeword would have interferences to one another.
The big sparses matrix would minimize the
interferences between the bits [1].

Since the bits ‘1" placed randomly, the
decision region was hardly to be determined. A series
of tests would be given to the LDPC decoder’s
system, matrix (8,16) system and matrix (24,48)
system, for testing its decision regions and the
capabilities in error correction. Each of the systems
would be tested from one bit error until N bits error,
or it means that each of the systems would be tested
until the systems could not do the error correction
anymore.

VOL. 1 NO. 1, 2015

Initialization

l

Variable to Parity
Check

Parity Check To

Variable NO

Requirement
Acceped?

" YES

Fig 3. Message Passing Algorithm Flowchart

3. System Model and Implementation

In general, the system had three main blocks.
There were encoding block, channel block, and
decoding block. This picture below presents general
system model which is used in this work.

Source Output

— Encoding— Channel — Decoding—

Fig 4. General System Model

3.1 Clock and Reset

This research used 50 MHz of internal FPGA’s
clock frequency [11]. The clock distributed equally
to all of the blocks. To controll the system to work
properly, enable buttons were needed.

When the enable was activated, the block which
related to it would started to work. The enables
would be activated by clock’s counter. The table
below presents the timing of enables activation.

The reset button was generated by FPGA’s switch
button 1. Same as clock, the reset would distributed
to all of the blocks. If reset button was on, then all of
the counters would be backed to 0.

The table 1 showed that clock are built with
counter and there is the comparison of speed of the
clock between using 8,16 and using 24,48 for parity
check.

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

Tabel 1. Enable activation

No Block Counter or timing
to activate enable
Matrix Matrix
(8,16) (24,48)
1 Encoding 1 1
2 Channel 18 39
3 Serial to parallel 19 40
4 Error Correction 24 41
5 Parallel to Serial 33 56
3.2 LDPC Encoding

Generally, encoding block has function to add
some redundant bits into source bit or information.
Source bits with redundant bits is called codeword.
The redundant bits would increase the capability of
the information to face error probabilities which is
caused by channel. The true codeword has to full fill
Eq. (1). C is the codeword, and H is the parity check
matrix.

T
cH =4 (1) [3]

Since both of matrices using coderate 'z, the
codeword would be twice bigger than the source. The
matrix (8,16) needed 8 bits as input, and the codeword
would be 16 bits long. The matrix (24,48) needed 24
bits source, and the encoder output would be 48 bits.
The process to get the codeword is bacially same as
with decoding process [9].

The input of encoder block matrix (8,16)
“10001001” would be the information input for
encoding block matrix (8,16). The codeword would
be “1000100101101100™ as the output. In matrix
(24,48), the 24 bits long would be needed as the input,
“100010011010111100010011”. The encoding
results was
“100010011010111100010011000001110000100110
011110™.

3.3 Channel

This research used binnary symmetric channel
type. It means that probability of receiving bit *0’ by
sending bit ‘1’ is same as probability of receiving bit
‘17 by sending bit ‘0’ [3], or probability of receiving
‘0" by sending ‘0’ is same as receiving ‘1’ by sending
‘17 [8].

| _Encoding H

"Error Pattern |

Fig. 5 Illustration of Channel

The channel block worked by using modulo-2
operation. The operation would be done between the

VOL. 1 NO. 1, 2015

codeword and channel error pattern. Error pattern
was a group of bits would give exact positon of error
in the codeword. Example, the error pattern for
making eror at first bit in matrix (8,16) was
*100000000000000”. Wrong codeword would be the
output of channel block.

3.4 LDPC Decoding

There were two steps of decoding process.
There were the error correction process and
codeword into source bits transformation. There were
two tasks in the error correction. At first, the system
had to decide whether the channel output was correct
or not. The second steps, if it was false, than the
decoder had to correct the codeword until it was true.
This step would use message passing algorithm.

The codeword into source transformation was
the process to transform the codeword into its
original information source form. These were serial
paralel block, decoder, paralel to serial block. At this
stage, the error correction process were designed to
finish in 13 clocks.

A. Serial Paralel Block

This block had a function to change serial form
of the channel output into parallel form. Parallel
computation prefer to be wused in FPGA
implementation because the process will be faster
than the serial form.

Since the output of telecommunication channel
is modeled in serial form, the convertion into parallel
form is needed.

[1LII'—1 Lb%x

Fig 6. Serial to Paralel Block

[

The figure 6 shows that the information in serial
form which contain “10101010” bits is converted
into paralel form.

B. Decoder Block or Error Correction Block

Decoder block had function to do error
correction. This block consisted of several section or
sub-systems.

The first sub-system was input receiver. The
input sub-system received the parallel form of
informations, and it would be continued into the
variable nodes sub-system.

A-13

A-14

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

The second sub-system was variable nodes. In
this sub-systems, each of connections between
variable nodes and check nodes had to be given a
value. As example at matrix (8,16), the connection
between ¢0 and fl would be named as d0, and the
connection between c0 and f2 would be named as e0.
At the initialization state, the input sub-systems
would send the channel output to the variable nodes.
Moreover, in the initizialization, both of d0 and e0
had same value as c0.

The third sub-systems was check nodes. The
check nodes sub-systems function was to decide
whether all of informations which have come were
correct or not. This system worked same as check
nodes process at message passing algorithm which
has been described before.

The fourth sub-system was variable nodes
calculation. This sub-system would decide the
correct codeword. This sub-system used voting for
the decision. The voting worked by choosing the
majority information, from channel and parity nodes,
as the correct version of the information.

The last sub-system was codeword validation.
This sub-system would re-check the new codeword
and decide whether it fulfilled the requirement or not.

C. Paralel Serial Block

The outputs of error correction block were in
parallel form. On the other hand, the original
information was in serial form. The parallel serial
block converted it into serial form.

Figure 7 illustrates the work of paralel serial
block. Each block in the illustration contains one
type information which is ‘1” or ‘0’. The 1" will be
converted into the ‘high’ signal, and the ‘0” will be
converted into the ‘low’ signal.

]

10101010

I..

Fig 7. Paralel to Serial Block

3.5 LDPC Implementation

This research used FPGA Cyclone IT EP2C20 .
The Quartus II 12.1 web edition was used as
synthesize tool.

VOL. 1 NO. 1, 2015

Fig 8. FPGA Cyclone IT1 [11]

The table below represents the features of
FPGA Cyclone II EP2C20 specifications. The LEs
referes to total numbers of logic elements in FPGA
Cyclone II EP2C20 [11]. The M4K block refers to
memory block of the FPGA [11]. The total RAM
Bits refers to total momories of the FPGA[11]. The
Embedded Multiplier refers to the maximum number
of 9 bits multiplier [5]. The PLLs refers to phase loop
lock numbers [11]. The Max I/O pins refers to
maximum pins which the FPGA has [11].

There were two important things that needed to
care about in implementation. Firstly, each block of
the system had to be assured that it worked properly
as its functions. Secondly, each blocks had to be
assured that there was no overlapping in the system.

4. Result and Analysis

From the previous section, we would know that
the total amount of clocks which needed for matrix
(8,16) were 22 clocks and matrix (24,48) were 38
clocks. There were 1 clock for serial paralel block,
13 clocks for error correction , 8 clocks for paralel
serial block for matrix (8,16), and , 16 clocks for
paralel serial block for matrix (24.48). If the
FPGA'’s clock was 50 MHz, than the periode of one
clock is equal to If 22 clocks were needed for
implementation, then it would take around 440 ns to
finish one cycle of matrix (8,16) decoding process. It
would be 560 ns for matrix (24.,48).

The error correction process it self would need
260 ns; However, as the consequences to work only
in 13 clocks, the bigger matrix would need more of
resources. Tabel 3 presents the results of FPGA
resources utilization.

16 seconds = 20ns
50x10

After around 300 error variations gave to the each
systems, the results showed that matrix (8,16) had
capability to correct maximum two error bits, and
matrix (24,48) had capability to correct maximum three
error bits. Yet, there were still restrictions in the error
correction process. In matrix (8,16), if we gave errors
at 6’th bit and 13’th
bit from the original codeword “1000100101101100”,
then the error codeword would be
The error codeword would

“1000101101101000”.

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

become the input of the decoder. The error correction
results showed that there was changes. The 6’th bit
changed its values from ‘0’ to “1°, and the 13°th bit
changed its values from “1’ to “0’. It means that error
correction worked properly.

On the other hand, if we put 6’th bit and 15°th bit
as the error bits, then the result would be “000000
0000000000 It means that the error correction
didn’t
work properly this time. The error correcting decision
region of matrix (8,16) had main role for these
problems.

At section two has been described that each
decoder has limitation due to the decision region. The
most importance decision process in message passing
was happen in the check nodes. It means that if the
decision process or the decision region in the check
nodes could be
discovered, than it would become easier to find the
limitations of error correction process.

The figure 13 presents the check nodes decision

region for correcting 6’th bit and 13’th bit. The 6’th bit
decision is determined by f5 and f6 check nodes, and
the 13’th bit is determined by f1 and f7. In general,
decision regions for 6’th bit and 13’th have no a
intersection.
In the f5 decision region, the C6 (representation of 6’th
bit) would have a possibility to intersect with C1, C8,
and Cl11, and in the f6 decision, the error correction
process might have intersections possibility with C4,
C3, and CI12. Both the f5 and the f6 only have a
intersection at C6.

In the f1 decision region, the intersections for 13’th
bit correction might be happen with C0, C2, and C15,
and in the f7, the intersections might be happen with
C5, C9, and C14. Both the fl and the {7 only have a
intersection at C13.

Picture 14 presents the decision for correcting the
6’th bit and 15°th bit. The error correction process
involved four parity nodes. The f1 and the {8 used for
15’th bit., and the f6 and f5 use for 6’th bit. In the
decision regions, there is an intersection between
decision region of 6’th bit and decision region of 15°th
bit. Both the {5 and the 8 have an intersection at C8.

This term caused the error. These are the
explanations. At this process, the channel didn’t bring
corruption for the 8’th bit, but the errors were given in
the 6’th bit and the 15’th bit. Since, there were
intersection at the f5 and the f8, the parity nodes
decided that C8 had an error. So, the parity nodes or
check nodes assumed that they had three error bits, not
two error bits, right now. Afier the parity nodes
finished the calculation, they would sent the results to
the variable nodes calculation sub-system. From that
values, the variable nodes calculation would decide
“the correct” codeword. After “the correct” codeword

Fig9 - [Illustration of decision regions for
correctiong error at the 6’th bit and the 13’th bit

had been decided, the validation would say that there
was still an error in the codeword. The system would
repeat the processes. Until the loop limit was reached,
the system still could not give the true codeword. As
the result, the system gave “000000000000000
07 as the output.

The picture below presents the decision regions
for correcting error at 1’st bit. Since matrix (24, 48) had
we=4 and w,= §, every variable nodes would connect
with four parity check nodes. Each of parity check
nodes connected with eight variable nodes. It means
that it would take four check nodes for correcting one
error bit.

Fig 10. Illustration of decision regions for correcting
error at 6°th bit and 15°th bit

If the error was at 1’st bit, the decision process
would depend on the parity nodes f1, 2, f9 and f11.
The 2 parity nodes have intersections in C1 with all
parity nodes, C4 with the f1, and C2 with the 9. The
fl11 and the 9 parity nodes have intersection at C8;
However, with this big number of interferences, it
didn’t affected the error correction for 1°st bit. On the
other hand, in the matrix (8,16), for one error bit
correction, if there were intersections more than one
bit in the check nodes, then the error correction could
not be done. The bigger sparse matrix would have

VOL. 1 NO. 1, 2015 A-15

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

F1

more capabilities of error correction. Moreover, the
matrix (24,48) had the capability to correct until

F2

cas ©C5

C3
Cc42
c7

C48 c46

C6

c41
| Cc45

Cc47

C43

C26

c29

C42

c2 |

C1

c4

Cc9

c18

ca27

C33

Cc8

C37 c19

C34

F11

three error bits.

Example, The information ‘000010011010
11110001001101000011000010011
00111 10" had three error bits on 1’st bit, 26’th bit,
and 30’th bit. The error correction sub-system fixed
the errors, and the result was ‘100010011010
11110001001100000111000010011
0011110

The full capability had not been reached. If the
errors were at 1’st bit, 26’th bit, and 27’th bit, than
the error correction result would be ‘000000000
00000000000000000000000000000
0000000000,

The better decision regions would be needed to

F9

Fig 11. Ilustration of decision regions for
correcting error at 1’st bit

give more capabilities at error correction.

Tabel 2. FPGA Cyclone II EP2C20 Specifications [5]

A-16

Features LEs M4K Total Embedded | PLLs | Max
_— 1/0
RAM Ram Multiplier ;
pins
Block Bits
18752 52 239616 26 4 315
Tabel 3. Results of FPGA Resources Utilization
Matrix total total dedicated total total total
logic combinational | < lca.‘l) e memory logic
elements functions ogie register pins bits elements
(&.16) 28% 22% 17% 11% % 28%
(24.48) 72% 57% 31% 11% 16% 2%
5. Conclusions Acknowledgment
The Message passing algorithm gave This work was supported by Telkom University

improvement for error correction capabilities than the
bit flipping algorithm. The computation was shorter,
and the error correction could fix more than one
errors.

The message passing could correct maximum two
error bits for matrix (8,16) and maximum three error
bits for matrix (24,48); However, better decision
region will be needed for achieving more capabilities
of error correction.

The systems could finish the error correction
process in 13 clocks or around 260 ns; However, the
bigger matrix would need more resources of FPGA
as the consequence.

VOL. 1 NO. 1, 2015

Digital Technique Laboratory.

*aditia.tarigan.id@ieee.org,
*ritapurnamasari@telkomuniversity.ac.id,
*maydhona@telkomuniversity.ac.id

References

[1]. GALLAGER, R. G. (1962). Low-Density Parity-
Check Codes. IRE TRANSACTIONS ON
INFORMATION THEORY, 21-28.

[2] Xin-Ru, Lee., Chih-Lung Chen, Hsie-Chia Chang,
and Chen-Yi Lee. (2015). A 7.92 Gb/s 437.2 mW

(3]

[4]

(3]

(6]

ISSN: 9772477798001

Tarigan et al. / Journal of Measurements, Electronics, Communications, and Systems (2015) CS0115-01

Stochastic LDPC Decoder Chip for IEEE
802.15.3¢ Applications. IEEE TRANSACTIONS
ON CIRCUITS AND SYSTEMS.

Meng Li, Youngjoo Lee, Yanxiang Huang and
Liesbet Van der Perre. (2015). Area and energy
efficient 802.11ad LDPC decoding processor.
Chia-Hsiang Chen, Wei Tang, Zhengya Zhang.
(2015). A 2.4mm2 130mW MMSE-Nonbinary-
LDPC Iterative Detector-Decoder for 4x4 256-
OAM MIMO in 65nm CMOS. IEEE
International Solid-State Circuits Conference.
Michigan: IEEE

Purnamasari, R., Wijanto, H., & Hidayat, I.
(2014). Design and implementation of LDPC
(Low Density Parity Check) coding technigue on
FPGA (Field Programmable Gate Array) for
DVB-S2 (Digital Video Broadcasting-Satellite).
Aerospace Electronics and Remote Sensing
Technology (ICARES), 2014 IEEE International
Conference on (hal. 83-88). Yogyakarta: IEEE.
ETSI EN 302 755 VI1.3.1: "Digital Video
Broadcasting; Frame structure channel coding

Author information

Aditia Tarigan is an
undergraduate student at Telkom
University, Indonesia. Since
2012, he has been a research
assistant at Telkom University RF
Electronic Communication Lab.

Rita Purnamasari is a lecture at
Telkom University, Indonesia.
She received Master n
Telecommunication Engineering
from the Telkom Institute of
Technology, Indonesia, in the
2012 Currently, She is the head of
. Digital Electronic Laboratory at
Telkom University.

[7]

VOL. 1 NO. 1, 2015

and modulation for a second generation digital
terrestrial television broadcasting system (DVB-
T2)".

ETSI EN 302 307-1 V1.4.1: "Digital Video
Broadcasting; Second generation framing
structure, channel coding and modulation
systems for Broadcasting, Interactive Services,
News Gathering and other broadband satellite
applications, Part 1: DVB-52".

Haykin, S. (2000). Communication Systems
4th Edition. New York: John Wiley & Sons,
Inc

Leiner, B. M. (2005). LDPC Codes — a brief

Tutorial.

Siegel, Paul H. An Introduction to Low-
Density Parity-Check Codes. University of
California, San Diego

Cyclone Il Device Handbook, Volume 1 .
(2008). San Jose: www.Altera.com.

Efa Maydhona Saputra is a lecture

at Telkom University, Indonesia. He

received Master in

Telecommunication Engineering from

the Telkom Institute of Technology,
. Indonesia, in the 2013.

{
'S

A-17

