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Abstract
Human skeletal detection and human gesture recognition are interesting subjects that have been investigated
during the past three decades. Single-RGB, RGB-D camera, and Initial Measurement Unit (IMU) are
some of the sensors for recording human motion data. Numerous methods for gesture recognition and
classification have been reviewed in this survey. The classification is divided into nonparametric models
and deep learning models, which afterwards will be compared in terms of accuracy and running time,
respectively. The feature extractions are separated based on features processed from the sensor data,
including skeleton-based features, depth image-based features, and hybrid features. A comparison
of accuracy values will be offered based on the model and its attributes. In addition, we present
an interchange of perspectives on deep learning and nonparametric models based on Karl Popper’s
perspective and Kuhn’s paradigm in the study of the philosophy of science. By substituting the falsification
principle for induction, Popper attempts to refute the traditional empiricist perspective of the scientific
method. From the philosophy of science’s perspective, the study on human action recognition is in the
normal science phase according to Kuhn’s paradigm and is corroborated in accordance with Popper’s theory.
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1. Introduction
Throughout the history of human understanding,

philosophy and science have always related to one
another. Philosophy and science are intertwined in
their pursuit of truth fragments. The aim of science
is to describe, whereas the task of philosophy is to
interpret the phenomena of the universe or the truth
in mind, whereas the truth of science is derived from
experiences and observations. Before doing a survey
of human gesture recognition using deep learning and
nonparametric models, its ontology, epistemology, and
axiology must be understood. The etymology of ontol-
ogy comes from the Greek language. Ontology derives
from the Greek terms ”ontos,” which means ”being,”
and ”logos,” which means ”science, teachings, or be-
liefs.” Ontology, in terms of terminology, is the branch

of science that explores the true nature and essence
of things. Epistemology is the branch of philosophy
that examines in depth how to get accurate informa-
tion. Axiology is a branch of research that explores the
philosophical nature of values. [1]

Ontology classifications can be defined by their
textual definitions, a set of properties, and a logical
definition composed of several formulas [2]. We first
should establish the ontology for human action recog-
nition in semantic space. According to Ziaeefard [3],
human action recognition can be differentiated using
semantic space characteristics. As depicted in Fig. 1,
the semantic space is separated into body parts (pose
and poselets), qualities, linked objects, human-object
interactions, and the context of the location. Using
a similar method to the human ability to distinguish
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in semantic space, a machine can learn to recognize
human activities from a given image sequences.

Fig. 1. Semantic space: playing football recognition
[3]. Pose (certain parts of body pose of football player),
poselet (right hand lifted, left hand straight down), at-
tributes (head looking down), related objects (ball, in-
teraction left foot with ball), context of place (ball
field).

In a nutshell, epistemology is the study of how to
obtain knowledge. There are some methods to obtain
knowledge, i.e., literature review, survey, and interview
[4]. For example, in a survey, we can use the Likert
scale as a survey instrument and use certain scales
in questionnaires. To obtain a good survey, we use
reliability and validity tests to measure the acceptance
indicator [5]. The knowledge that we want to obtain as
well as our study goal, i.e., how to implement a human
action recognition algorithm for machine learning by
using a vision sensor, We use some parameters as a
performance index to compare between nonparametric
models and deep learning models, such as accuracy
and running time. To get accuracy, we use a confusion
matrix as shown in Table 1.

Table 1: Confusion Matrix

Prediction
Class 1 Class 2

Observation Class 1 TP FN
Class 2 FP TN

where True positive (TP) is positive observations and
positive predicting results, False negative (FN) is posi-
tive observations and negative predicting results, True
negative (TN) is negative observation results and nega-
tive predicting results, and False positive (FP) is nega-
tive observations and positive predicting results. The
accuracy can be calculated as shown in Eq. (1).

Accuracy =
T P+T N

T P+FN +FP+T N
(1)

Running time depends on the specifications of the
hardware used (GPU/processor), the algorithm in the
model is built, and the framework of model used. There
is a trade-off between accuracy and the amount of time
it takes to compute. For example, if you want more ac-
curacy, it will take longer to compute, but if you want
less accuracy, it will take less time. Vision sensors,

such as the RGB-D sensor, are used for the recogni-
tion of human movements, facial recognition, the intro-
duction of human interactions [3], and 3D reconstruc-
tion. The RGB-D sensors for example are Kinect, Asus
Xtion, and Intel RealSense. These sensors have the
capability to capture imagery and are subsequently pro-
cessed for detection and recognition purposes. There
are open-source benchmark datasets for human pose es-
timation using RGB-D sensor to carry out performance
tests of learning models such as MSR Action3D1 [6],
UTKinect-Action3D2 [7], MSRDaily-Activity3D3 [8],
UTD-MHAD4 [9], SBU Kinect Interaction5 [10], NTU
RGB+D6 [11], and PKU-MMD7 [12].

Axiology is about the value of research that can
be used to solve real problems in our society. The
implementation of human action recognition has a wide
range of applications, such as surveillance cameras (or
video surveillance), elderly care, virtual reality, and
human-machine interactions [3]. Our approach in terms
of axiology is to build a learning and control system
for human motion recognition in general. Examples of
human motion are Indonesian traditional dancing and
traditional martial arts such as pencak silat.

Online recognition, occlusion, variations in cam-
era capture angle, computational time, and biometric
changes present a major difficulty in human action
recognition. Online recognition is the ability to recog-
nize changes and classify movements instantaneously
(in limited time intervals) of video sequences continu-
ously. Occlusion, where an affected part of the body
also causes the detection process to become more dif-
ficult [13]. Variations in camera capture angles and
biometric changes, such as variations in body size, ap-
pearance, shape, and sensor-to-subject distance, will
impact the algorithm’s performance. Time computa-
tion is also a factor in influencing an algorithm’s per-
formance.

A human action recognition model will be divided
into two models, i.e., a nonparametric model [14] and
a deep learning model. In nonparametric models, a
mathematical model is used to classify a set of sta-
tistical data where the data of variables tested in the
hypothesis model did not follow a certain probability
distribution. Furthermore, the feature extraction re-
sults of the next feature are processed and modeled
mathematically with certain classification methods in
order to obtain the desired human action recognition.
While on a deep learning model, feature extraction
can be built automatically from deep learning architec-
ture design learning to be subsequently used in motion
recognition processes. Examples of classifier meth-
ods on nonparametric models are random forest (RF),
k-Nearest Neighbor (kNN), Support Vector Machine

1research.microsoft.com/en-us/um/people/zliu/actionrecorsrc
2cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
3research.microsoft.com/en-us/um/people/zliu/actionrecorsrc
4personal.utdallas.edu/∼kehtar/UTD-MHAD.html
5github.com/xrenaa/SBU Kinect dataset process
6rose1.ntu.edu.sg/datasets/actionrecognition.asp
7www.icst.pku.edu.cn/struct/Projects/PKUMMD.html
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(SVM), Extreme Learning Machine (ELM), Hidden
Markov model (HMM), graph, and template matching.
Meanwhile, the examples for the classifier method on
deep learning models are the convolution neural net-
work (CNN), the recurrent neural network (RNN), and
CNN + LSTM (long short-term memory).

Karl Popper established one of the most popular
falsification methods in the philosophy of science. The
viewpoint of Karl Popper is a useful beginning point
for falsifying suggested theories or hypotheses. Pop-
per produced a comprehensive critique of historicism,
holism, and their associated ideas [15]. For the research
to be corroborated, every observation, experiment, and
method employed must be falsified by others (meth-
ods, experiments, or observations). If the proposed
theory or hypothesis can withstand a process of falsifi-
cation, then the theory or observation is supported or
strengthened. The idea or hypothesis is provisionally
accepted so long as no other theory or scientific obser-
vation refutes it [16]. To find a novelty in every field of
study, one might begin by examining historical science
and its paradigm. As demonstrated in Fig. 2, Kuhn
divides the structure of scientific revolutions into four
paradigms: pre-science, normal science, anomaly and
the development of scientific discoveries, and crisis and
the emergence of scientific ideas [17].

Fig. 2. The structure of scientific revolutions by
Thomas Kuhn [17].

2. Human Action Recognition Features
The extraction of features from the sensor read-

ings of RGB or RGB-D cameras can be categorized
as skeleton-based, depth image-based, or hybrid [18].
Table 2 represents the accuracy of human action recog-
nition, while Table 3 depicts the survey-related process-
ing or computation time for skeletal detection. The
study of human action recognition is in the normal sci-
ence phase according to Kuhn’s paradigm, including
the scientific practice of reasoning, observing, and ex-
perimenting within a well-established paradigm or ex-
planatory framework. Recent research in human action
recognition employs skeletal estimation, depth-image
estimation, and hybrid features as shown in Table 2.

2.1. Depth Image-based Features
The features of the depth image can be extracted

using the depth motion map (DMM). For depth se-
quences with a number of N-frames, DMM can be
obtained through Eq. (2) as follows.

DMM{ f ,s,t} =
N−1

∑
i=1

∣∣∣mapi+1
{ f ,s,t}−mapi

{ f ,s,t}

∣∣∣ (2)

Fig. 3. Openpose for skeleton readings in single sub-
jects and two subjects, for example, pencak silat mo-
tions.

where i represents the frame index, f , s, and t represent
orthogonal projection 2D-mapping to the front, side,
and top sides, respectively. From the DMM comput-
ing results, the next step is to implement human ac-
tion recognition using histograms of oriented gradients
(HoG) [19]. Additionally, the approach of principal
component analysis (PCA) can be used to minimize
the dimensionality of these features.

2.2. Skeleton-based Features
The skeleton-based method employs CNN or RNN

based on the adopted deep learning structure to deter-
mine the coordinate position of the joint skeleton using
a single-RGB sensor. VNect (Mehta et al. [20]) and
OpenPose are open source pretrained models for hu-
man pose estimation (Ze Chao et al. [21]). Fig. 3
illustrates a joint skeleton reading application utilizing
OpenPose, with a single subject and many subjects.
OpenPose has the ability to read Part Affinity Field
(PAF) skeletons and a number of human objects. Open-
Pose divides the body’s posture into 25 joints, and it
can be used for face and hand readings, as one can see
in Fig. 4.

(a) Body keypoints (b) Hand keypoints

(c) Face keypoints

Fig. 4. OpenPose for reading the joint skeleton posi-
tion for the body (top left), hand (top right), and face
(bottom) [21]
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Table 2: Survey on Human Action Recognition Literature Using the RGB-D Sensor With Corresponding Datasets

Dataset: MSR Action3D
Features Nonparametric Model Deep Learning Model

Ref. Year Classifier Acc. (%) Ref. Year Classifier Acc. (%)
Wang et al. [22] 2014 Actionlet Ensemble 86 Veeriah et al. [23] 2015 RNN 92.03
Chaaraoui et al. [24] 2014 SVM 92.46 Du et al. [25] 2015 RNN 94.49
Theodorakopoulos et al. [26] 2014 kNN 93.61 Núñez et al. [27] 2018 CNN+LSTM 96
Koniusz et al. [28] 2016 SVM 93.96 Lee et al. [29] 2017 LSTM 97.22
Liu et al. [30] 2016 Matching 94.4
Guo et al. [31] 2018 SVM 95.24
Liu et al. [32] 2018 SVM 95.6
Qiao et al. [33] 2017 SVM 95.9

Skeleton-based

Chen et al. [34] 2016 Graph 96.1
Jia et al. [35] 2013 SVM 89.3 Wang et al. [36] 2015 CNN 94.58
Devanne et al. [37] 2015 kNN 92.1 Wang et al. [38] 2016 CNN 100
Yang et al. [39] 2014 SVM 93.9
Liu et al. [40] 2016 SVM 94.28
Chen et al. [41] 2017 ELM 96.7

Depth image-based

Liu et al. [42] 2018 SVM 97.64
Wang et al. [22] 2014 SVM 88.2 Liu et al. [43] 2016 CNN 84.07
Ji et al. [44] 2018 SVM 90.8 Kamel et al. [45] 2018 CNN 94.51
Jalal et al. [46] 2017 HMM 93.3 Shi et al. [47] 2017 RNN 94.9
Kong et al. [48] 2016 SVM 93.99
Zhu et al. [8] 2013 RF 94.3
Ohn-Bar et al. [49] 2013 SVM 94.84

Hybrid features

Shahroudy et al. [50] 2016 SVM 98.2
Dataset: UTKinect-Action3D

Features Nonparametric Model Deep Learning Model
Ref. Year Classifier Acc. (%) Ref. Year Classifier Acc. (%)

Theodorakopoulos et al. [26] 2014 kNN 90.95 Rahmani et al. [51] 2017 LSTM 95.96
Wang et al. [52] 2016 Matching 93.47 Lee et al. [29] 2017 LSTM 96.67
Chen et al. [34] 2016 Graph 95.96 Liu et al. [53] 2016 LSTM 97
Vemulapalli et al. [54] 2014 SVM 97.08 Núñez et al. [27] 2018 CNN+LSTM 99
Guo et al. [31] 2018 SVM 97.85 Liu et al. [55] 2018 LSTM 99

Skeleton-based

Koniusz et al. [28] 2016 SVM 98.2
Liu et al. [42] 2018 SVM 86 Liu et al. [43] 2016 CNN 8221
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Slama et al. [56] 2014 PDF 95.25 Wang et al. [38] 2016 CNN 90.91Depth image-based
Wang et al. [36] 2015 CNN 91.92

Raman et al. [57] 2016 HMM 87.9 Liu et al. [43] 2016 CNN 96
Zhu et al. [8] 2013 RF 91.9
Liu et al. [58] 2015 HC-RF 92Hybrid features

Zhang et al. [59] 2016 SVM 94.9
Dataset: MSRDailyActivity3D

Features Nonparametric Model Deep Learning Model
Ref. Year Classifier Acc. (%) Ref. Year Classifier Acc. (%)

Zanfir et al. [60] 2013 kNN 73.8 Núñez et al. [27] 2018 CNN+LSTM 63.1
Qiao et al. [33] 2017 SVM 75
Cai et al. [61] 2016 MIL 78.52Skeleton-based

Liu et al. [42] 2018 SVM 91
Oreifej et al. [62] 2013 SVM 80 Wang et al. [36] 2015 CNN 78.12
Yang et al. [39] 2014 SVM 86.25 Wang et al. [38] 2016 CNN 85
Jia et al. [35] 2016 SVM 80.63 Luo et al. [63] 2017 CNN+LSTM 86.9Depth image-based

Chen et al. [41] 2017 ELM 89 Shinde et al. [64] 2018 YOLO 88.358
Kong et al. [48] 2016 SVM 73.21
Ji et al. [44] 2018 SVM 81.3
Zhang et al. [59] 2016 SVM 86
Kong et al. [65] 2016 DRRL 87.5
Shahroudy et al. [50] 2016 SVM 91.25
Althloothi et al. [66] 2014 SVM 93.1

Hybrid features

Jalal et al. [46] 2017 HMM 94.1
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Table 3: Time Computation Parameter (Note: mAP (%) is mean Average Precision)

Vision Sensor Ref. Year Methods Model mAP (%) Time Computation Framework Hardware Output
single-RGB
camera

Newell et
al. [67]

2016 stacked
hourglass

Deep learning:
CNN

87.4 75 ms - Nvidia TITAN
X

body joint
(single-person)

single-RGB
camera

Mehta et
al. [20]

2017 VNect Deep learning:
CNN

76.6 CNN 18 ms, skele-
ton fitting 7–10 ms,
pre-processing and
filtering 5 ms (total
33 ms)

Caffe 6-core Xeon
CPU 3.8 GHz,
Titan GPU

Body joint
(multi-person)

single-RGB
camera

Zhe Cao et
al. [21]

2017 OpenPose:
PAF

Deep learning:
multistage-
CNN

85.6 22 fps - 36 ms (body
+ foot)

Cuda 8 Nvidia GTX
1080 Ti

Body, fingers,
and face (multi-
person)

Kinect v2 +
FIR camera

Nishi et al.
[68]

2017 VICON Fully convolu-
tional network
(FCN)

87.5 50 fps - 1 GForce
GTX Titan X;
2 Nvidia Titan
X

body joint

Kinect v2 Vasileiadis
et al. [69]

2019 PAF 3D-CNN 87.3 360 ms (0.36 s per
frame or 2.8 fps)

Chainer NVIDIA GTX
970 GPU

body joint

single-RGB
camera

Luvizon et
al. [70]

2019 Soft-argmax Deep learning:
CNN

90.8 29.3 fps Tensorflow NVIDIA GPU
K20

body joint
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Table 4: Dimension Complexity of Computing Process

Methods Computation
BMLD1-GMM2 O(J×KhD2)
LDA3 + HMM O(KhMP+P3)+O(NhH2)
PCA4 + NBNN5 O(m3 +m2r)+

O(r×nc ×nd + log(nc +nd))
SVM6 O(r3)
PCA + STOP7 O(m3 +m2r)+O(nc × r)
PCA + CRC8 O(m3 +m2r)+O(nc × r)

Notes:
1BMLD: bi-gram maximum likelihood decoding
2GMM: Gaussian mixture model
3LDA: linier discriminant analysis
4PCA: principal component analysis
5NBNN: Naive Bayes nearest neighbour
6SVM: support vector machine
7STOP: space-time occupancy patterns
8CRC: collaborative representation based classification

2.3. Hybrid Features
Using the fusion principle, one can utilize some

features as hybrid features. The collaborative repre-
sentation classifier (CRC) is one application approach
for fusion principles [71]. In addition to the RGB-D
sensor for the DMM depth image and skeleton feature,
inertial characteristics are also incorporated. Chen et
al. [19] combine the DMM, skeleton, and inertia pa-
rameters of fusion sensors in online movement recog-
nition. Dimensional complexity using L2-regularized
CRC method is O(m3 +m2r)+O(nc × r), as shown in
Table 4. In detail, the computation time for all steps
are (2.0±0.4) ms/frame for projected map generation,
(3.3± 0.6) ms/frame for DMM process, (2.5± 1.2)
ms/sequence of motion for PCA process, and (1.8±
0.5) ms/sequence of motion for human action recogni-
tion process.

3. Classifier Methods for Human Action Recog-
nition
The classifier methods for human movement recog-

nition are generally categorized into nonparametric
model models and deep learning models. Some of the
classifier methods related to these two models can be
seen in Fig. 5. In deep learning models, the CNN-
based movement recognition process generally focuses
on the position processing or the trajectory of the joint
skeleton in an image, which is then processed with
CNN for its classification.

Li et al. [72] use a joint distance map (JDM)
of one or several joint skeletons converted into color
variations to obtain temporal information. Mehta et al.
[20] introduce the online method for the 3D skeletal
pose by using single-RGB cameras. The 2D pose is
taken from a joint position without using the depth
image method and converted into a 3D pose with the
skeleton fitting process. Pham et al. [73] use a 3D joint

Fig. 5. Some classifier methods for human action recog-
nition.

skeleton coordinate and divide each skeleton into five
parts, where each joint is combined in the order of the
physical form of the body, which adopts the evolution
of 3D spatio-temporal motions. Ze Chao et al. [21] use
the CNN + PAF multi-stage architecture to improve
the detection performance of multiple subjects with
the OpenPose application, as shown in Fig. 6. The
network is categorized into two parts: the top predicts
confidence maps, while the bottom predicts affinity
fields, where F denotes feature maps, ρ t and φ t are the
CNNs for inference at Stage t.
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Fig. 6. Two-branch multi-stage CNN+PAF using Open-
Pose [21]. The first stage is to predict the PAF, Lt , and
the second stage is to predict the level of confidence
map, St .

4. Discussions
We obtain a comparison of accuracy for human ac-

tion recognition using three different datasets as shown
in Fig. 7 from data processing on Table 2. Nonparamet-
ric models have an average accuracy 90% while deep
learning models have an average accuracy about 89.1%.
Although deep learning has become popular recently,
nonparametric models still have a better performance
index in terms of average accuracy for human action
recognition. A Deep learning model has been used
as a skeleton detection model, which has better time
processing and is suitable for online recognition. For
example, the OpenPose algorithm approximately has a
computation time of 36 ms (22 fps) using Nvidia GTX
1080 Ti which is considered fast enough for online
recognition as shown in Fig. 3.

From Popper’s viewpoint, to accommodate the
falsification process, we propose a flowchart for the fal-
sifying step with scientific observation or experiment as
shown in Fig. 8. We put falsification process as well as

24
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(a) MSR Action3D dataset (b) UTKinect-Action 3D dataset (c) MSRDailyActivity3D dataset

Fig. 7. The accuracy comparison for nonparametric models and deep learning models using benchmark datasets:
(a) MSR Action3D dataset, (b) UTKinect-Action 3D dataset, and (c) MSRDailyActivity3D dataset.

evaluating process on the same step. Kuhn’s paradigm
of the scientific revolution, human action recognition
is now in the stage of normal science. The method that
is used for classification now is the machine learning
method that has been developed in 19th of century with
minor modifications in the algorithm, particularly in
deep learning models. There is still no emergence of
new scientific discoveries and theories yet. Human ac-
tion recognition using nonparametric and deep learning
models deserves additional research into more chal-
lenging problems such as occlusion, shading, unusual
activities, viewpoint variation, camera motion, back-
ground clutter, and execution rate [74].

Fig. 8. Searching method for the best learning model
of human action recognition with added Popper’s falsi-
fication.

5. Conclusion
This paper reviews human action recognition, in-

corporating some philosophy of science approaches.
Deep learning and nonparametric approaches have been
studied in order to determine the state of the art in hu-
man action recognition using different types of features
such as depth-image based features, skeleton-based
features, and hybrid features. From the philosophy
of science’s perspective, the study of human action
recognition is in the normal science phase according
to Kuhn’s paradigm, including the scientific practice
of reasoning, observing, and experimenting within a
well-established paradigm or explanatory framework as
shown in the literature study in Table 2. In accordance
with Popper’s theory, the human action recognition
study is corroborated by the usage of a methodology to
falsify a method through the performance of evaluation
metrics. Although the deep learning is more favorable
nowadays, the evaluation performance findings indicate
that deep learning and nonparametric methods yield
equivalent outcomes.
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