
CEPAT Journal of Computer Engineering: Progress, Application and Technology

Vol. 1, No. 1, May 2022, pp. 46-55

ISSN 2963-6728, DOI: https://doi.org/10.25124/cepat.v1i01.4863 46

Journal homepage: https://journals.telkomuniversity.ac.id/cepat

A Review of Pathfinding in Game Development

Sara Lutami Pardede1, Fadel Ramli Athallah1, Fikri Dzulfikar Zain1, Yahya Nur Huda1, Ratna Astuti

Nugrahaeni1, Meta Kallista1, Purba Daru Kusuma1
1Department of Computer Engineering, School of Electrical Engineering, Telkom University, Indonesia

Article Info ABSTRACT

Article history:

Received May 19, 2022

Revised May 29, 2022

Accepted May 30, 2022

 Pathfinding is one important method in many studies or works that consists of

autonomous movements, such as robots, games, transportation, and so on.

Pathfinding aims to find the most efficient route for the related autonomous

entity. To date, there are many algorithms regarding pathfinding. Especially,

there are four well-known pathfinding algorithms: A*, Theta*, Dijkstra, and

Breadth-First Search (BFS). Due to this circumstance, this work aims to

observe and review these four well-known algorithms. The discussion

consists of the conceptual model or framework, the formalization, and the

implementation. Through the comparison review, it is shown that every

algorithm has its advantages and disadvantages. This problem often lies in the

contradiction between the performance and the computational result. This

work also shows that there is a lot of studies that modify or hybridize these

algorithms with other methods, such as multi-agent system, metaheuristic, or

any other searching method. This circumstance shows that although these

algorithms are old, the works to implement or modify these algorithms are

still interesting. Hybridization of these algorithms is needed to maintain their

effectiveness while tackling its weakness. The result shows that these

algorithms have been implemented in many games, so they are promising to

be used in future game development, especially in constructing the non-

playable character (NPC).

Keywords:

Pathfinding

Game programming

A* algorithm

Dijkstra

Breadth-First search

This is an open access article under the CC BY-SA license.

Corresponding Author:

Sara Lutami Pardede

Department of Computer Engineering

School of Electrical Engineering, Telkom University

Bandung, Indonesia

Email: saralutamipardede@student.telkomuniversity.ac.id

1. INTRODUCTION

Pathfinding is a well-known method that was used in many areas, from games, logistics, and autonomous

robots. The objective of pathfinding is to give the most efficient route for the autonomous entity to reach its

destination. In the game, pathfinding is mostly used for the Non-Player Character (NPC)’s movement, such as

in the car racing game [1], in the educational game [2], tower game [3], and so on.

Non-Player Character (NPC) is a character in a video game that cannot be played by the player. Usually,

NPC can be an object or other characters such as a villager, animal, plant, vehicle, or monster. In this era, NPC

is programmed to make the game’s content more varied so that the player does not feel bored while playing

the game. For example, NPC is programmed to have an AI pathfinding algorithm so it can find its way to the

destination point by the fastest or the shortest route.

https://doi.org/10.25124/cepat.v1i01.4863
https://creativecommons.org/licenses/by-sa/4.0/
mailto:saralutamipardede@student.telkomuniversity.ac.id

CEPAT Journal of Computer Engineering: Progress, Application, and Technology

A Review of Pathfinding in Game Development (Sara Lutami Pardede)

47

Recently, there are many algorithms designed for pathfinding. Each algorithm was designed to tackle a

certain objective, whether they are proposing the shortest path, promoting fewer computation resources, and

so on. As it is stated in the no-free lunch theory, there is not any algorithm that is the best in all parameters or

in solving all routing problems. The effectiveness of an algorithm is also affected by the routing problem it

tries to solve. There are four well-known pathfinding algorithms: A*, Theta*, Dijkstra, and Breadth-First

Search (BFS). These algorithms have been used widely in many studies regarding pathfinding and routing

problems.

This work aims to observe these four well-known algorithms (A*, Theta*, Dijkstra, and BFS). The

observation and discussion of every algorithm include the basic concept or framework, formalization, and the

implementation of this algorithm in certain fields. Through this exploration, we hope that this work can enrich

the discussion regarding pathfinding algorithms.

The remainder of the paper is organized as follows. The A* algorithm is discussed in the second section.

The Theta* algorithm is discussed in the third section. The Dijkstra algorithm is discussed in the fourth section.

The Best First Search algorithm is discussed in the fifth section. In the end, the conclusion of this work is

summarized in the sixth section.

2. A* ALGORITHM

 A* algorithm was a pathfinding algorithm that measures the heuristic distance between a given point,

while the pathfinding itself relies on the search space on how the A* graph is represented on the field [4]. A*

search the route first to see which route it will take, then compare the route and take the shortest path. The

formalization can be seen in (1). Meanwhile, the illustration can be seen in Fig. 1.

f(n) = g(n) + h(n) (1)

g(n) = the actual cost of a starting point to a specific point

h(n) = heuristic distance

f(n) = the accumulative between the actual point and the heuristic distance

Figure 1. A* Algorithm Demonstration

Sabri et al. [5] proposed experiments with two scenarios: with obstacles and without obstacles. They

also used various sizes of the map. In their work, there were two map range sizes: 200x200 and 500x500. There

were ten iterations for every experiment. It is also compared between the A* algorithm and the Bee algorithm.

The result of the obstacle-free map showed that the A* algorithm was better than the Bee algorithm. However,

the Bee algorithm was significantly better than the A* algorithm in solving the 500x500 map with obstacles.

They concluded that A* algorithm was ten times faster in the free obstacle game environment rather than the

Bee algorithm. But in the complicated environment, the Bee algorithm performed better.

There was also a modification of A* algorithm for a 3D engine to eliminate unnecessary bends in the

path. Smołka et al. [6] changed the heuristic to the Chebyshev metric. They also added the vertex penalties to

avoid the zig-zag path. They also modified the excess vertices reduction in the path and the algorithm itself. In

their work, they created ten test cases and subjected both algorithms to the same tests. There were seven simple

and complex heightmaps with various grid sizes of 20x20 and 40x40 to test the algorithm’s behavior. 2

heightmaps of a complex labyrinth with grid sizes 80x80 and 40x40 were real photos to check the algorithm

in a more complex case. Through experiment, it is shown that the modified A* (A*MOD) was approximately

 ISSN 2963-6728

CEPAT Journal of Computer Engineering: Progress, Application, and Technology, Vol. 1, No. 1, May 2022: 46-55

48

five times higher than the original A* algorithm. The smoother and more natural routes are produced.

Moreover, up to 75% of redundancy was removed.

A* is proven in solving the shortest path problem without considering the obstacles if the generating

nodes do not move toward the dead end. Compared to the Obstacle Tracing (OT) algorithm, there was a jagged

movement pattern that is caused by the grid or when the gap between the A* node is larger than the gap between

obstacles. Husniah et al. concluded that OT is better for runtime performance [7]. They used node count and

travel length as a parameter with ten scenarios to test. Non-Player Character (NPC) with both A* and OT

algorithm placed in the same spot and need to find a path to destination target. The map that the A* algorithm

made by the space between parameters with a value range of 0.1, 0.2, and 0.3.

Another research was about the implementation of the A* algorithm into the autonomous agent in the

game along with Navigation Mesh. By using the f(n) score of the node that is generated by Navmesh’s

polygons, A* can find the shortest path from the AI’s spawn point to the determined roaming point or the

player’s current location. Subrando et al. [8] used a testing ground map for analyzed the algorithm mechanics.

After running some tests, both memory usage and the frame rate are less significantly changed. The frame rate

falls from 55 FPS to 54 FPS (52 FPS at lowest) and the memory usage increased only from 2200 MB to 2357

MB (peak memory usage). All tests include the unreal engine 4’s processes.

When the A* algorithm is hybridized with the dynamic pathfinding algorithm (DPA), a better result

was obtained. Sazaki et al. [9] tested it with a qualitative testing technique on an empty track and racetrack that

contains the obstacles. In the experiment, the combined A* algorithm and DPA reached the finish line in three

out of five experiments. Contrary, the NPC with only DPA reached the finish line in all experiments. The paths

are letter S, spirals, 60 degrees, and 30 degrees. But in the other direction, NPC with only DPA experiences

failures on the empty racetrack.

When it came to a pathfinding game that has a 16x7 grid in a matrix consisting of game object nodes

[10], the number of visited nodes is linearly proportional to the length of the route and the processing time.

The nemy must find out which tree will be headed first and find each tree’s route using Manhattan Distance.

By using the classic heuristic Manhattan distance, we know that the more obstacles, the longer the processing

time needed to find a route to the tree.

A* algorithm also can be applied along with fuzzy logic on a game made using the concept of AI. An

example is a work conducted by Harsani et al. [11] on their Goat Foraging Games. There were 2 actors: the

player and the enemy. The enemy behavior is determined by using Fuzzy logic. A* algorithm is used to

determine the shortest distance between enemies and goats while the Manhattan heuristic is used to determine

the distance between the enemy and player. They made 3 levels of difficulties, and one of them have 8 dead

ends.

A* algorithm also can be implemented on Strategy and Maze Solving games. Barnouti et al. [12]

tested the algorithm by using images that represent a map that belongs to a strategy map or represented maze.

The map for strategy games was converted to three main colors while the maze only has black as a walkable

path and black as a non-walkable path. In their experiment, a player needed to select the source and destination

points, then the system will find the shortest path between the selected two points. More than 85% of images

can find the shortest path between the selected two points.

Another maze alike experiment was conducted by Permana et al. [13]. They compared the A* with

another pathfinding algorithm, such as Dijkstra and Breadth-First Search (BFS). In their research, these

algorithms were compared using 3 levels of Maze Runner game with the same obstacle position. The more

level, the more obstacles to interfere with. Then, they measured each process time, path length, and the number

of blocks through the computational process. They concluded that A* was the best algorithm in pathfinding,

especially for maze games/grids. The computational time is low, and the reaching time is short.

You et al. [14] optimized the performance of the A* search to reduce the complexity of the heuristic

function design for A*. They proposed evolutionary heuristic A* search, acronymized as (EHA*). In this

proposed algorithm, a Genetic Algorithm (GA) is used to optimize the multi-weighted heuristic function

(MWH). There are several agents in EHA*, and each of them contains random heuristic functions, then each

agent competes and generates better descendants during the iteration. When finished, the algorithm returns to

the optimized heuristic function set. They concluded that EHA* is capable enough to design and optimizes

MWH function. It also can serve optimal solution paths with minimal computational costs. The summarization

of these previous works can be seen in Table 1.

CEPAT Journal of Computer Engineering: Progress, Application, and Technology

A Review of Pathfinding in Game Development (Sara Lutami Pardede)

49

Table 1. Summary of Shortcoming Studies on A* Algorithm
No. Author Method Result

1. [5] Compare A* algorithm with Bee Algorithm. A* algorithm get 10 times better result than Bee

algorithm in an obstacle-free map. However, the Bee

algorithm gets a better result in a map with obstacles.
2. [6] Changed the A* heuristic to the Chebyshev metric

and add vertex penalties to avoid zig-zag path

(A*MOD).

The modified A* (A*MOD) was approximately five

times higher than the original A* algorithm.

3. [7] Compare A* algorithm with Obstacle Training

(OT).

OT is better on runtime performance than A* algorithm.

4. [8] Implemented A* algorithm along with Navigation
Mesh (NavMesh).

Memory usage and the frame rate are less significantly
changed.

5. [9] A* algorithm hybridized with the Dynamic

Pathfinding Algorithm (DPA).

The combined A* algorithm and DPA reached the finish

line in three out of five experiments. NPC with only DPA
reached the finish line in all experiment. NPC with only

DPA experiences failures on the empty racetrack.

6. [10] A* algorithm with classic heuristic Manhattan
Distance.

The more obstacles, the longer the processing time
needed to find a route to the tree.

7. [11] Implemented A* algorithm along with Fuzzy Logic. The enemy behavior is determined by using Fuzzy logic.

A* algorithm is used to determine the shortest distance
between enemies and goats while the Manhattan

heuristic is used to determine the distance between the
enemy and player.

8. [12] A* algorithm. More than 85% of images can find the shortest path

between the selected two points.
 9. [13] Compared A* with Dijkstra and BFS. A* was the best algorithm in pathfinding, especially for

maze games/grids. The computational time is low, and

the reaching time is short.
10. [14] Evolutionary Heuristic A* Search (EHA*). EHA* is capable enough to design and optimizes MWH

function. Serve optimal solution paths with minimal

computational costs.

3. THETA* ALGORITHM

One of the any-angle pathfinding algorithms was Theta* (Theta-Star). This algorithm was developed

based on the A* (A-Star). A* can find the short path but not the true shortest path. Even after post-smoothing,

it is restricted to moving from one parent vertex to only the neighbor vertex. Theta* is not restricted to this

kind, instead, a vertex will check for each successor whether they have line-of-sight or not. The illustration of

Theta* can be seen in Fig. 2.

Figure 2. Theta* Algorithm Demonstration

Daniel et al. [15] studied path planning for robotics and video games. However, the grid path might

not always be the true shortest path because its potential is artificially constrained to a multiple of 45 degrees.

This shortcoming led to the introduction of Basic Theta* and Angle-Propagation Theta* referred to as Theta*.

The authors tested the Basic Theta* and AP Theta* alongside with A* and Field D* in Map of Baldur’s Gate,

and Random Grid in the size of 100x100 and 500x500 with randomized blocked cells from range to 0% to 30%

of the size of the map. A* and Field D* managed to find the short path but not the true shortest path. Basic

Theta* does not guarantee the real shortest path. Angle-Propagation Theta* as the name suggests propagates

angle to determine whether two vertices have line-of-sight. AP Theta* has proven to be able to find the short

paths but because there were cases and conditions to be met before updating to the next vertex, it took a longer

runtime than Basic Theta*.

Phuc and Dong [16] applied the dynamic weight on the Theta* in the two-dimensional grid map. In

every loop, the system must check the line of sight between the expanding cells with the parent of the current

cell causing more time needed to find the solution. Based on it, they added dynamic weight values to decrease

 ISSN 2963-6728

CEPAT Journal of Computer Engineering: Progress, Application, and Technology, Vol. 1, No. 1, May 2022: 46-55

50

the time needed to find the solution. In their experiment, they compare 3 different kinds of theta* in four

different sizes of the map (20x20, 30x30, 40x40, and 50x50). On each map, there are 20% of the size of the

map is not passable. The results show that dynamic weight on Theta* in all maps has the lowest runtime but in

map 50x50 the path length is the highest and in map 30x30 number of nodes is the highest.

Firmansyah et al. [17] compared the A* and Basic Theta* algorithms in the pathfinding games that

were built based on the android. The map of the game would be square grids with 6 levels: 5x5, 10x10, 25x25,

50x50, 75x75, and 100x100. The map would have random obstacles, a random starting point, and a random

goal point. The result would be compared based on the criteria of completeness (guarantee of the discovery of

solution if exist), time complexity (runtime), and optimality (path length and nodes searched). The results show

that while A* and Basic Theta* have the same criteria completeness and relatively the same time complexity,

the A* algorithm has the advantage of fewer nodes searched, and Basic Theta* has the advantage of optimality

of shortest route.

For the modern games, Le et al. [18] applied A* and Theta*. It is also combined with the navigation

mesh for polygon structures in three-dimensional games. By converting two maps of popular games, Dota 2

and League of Legends, in 7 different locations of the map into two-dimensional grid maps including the

position of obstacles, player, and goal point they managed to demonstrate the A* and Theta* algorithm with

and without NavMesh. Theta* results were close to the true path found by humans and the movement looked

more natural, but the times taken by Theta* were longer about 70% than A*.

 Mendonca and Goodwin [19] introduced Cluster Theta* (C-Theta*). This algorithm was the improved

version of Theta*. This algorithm tries to maintain the properties of its parents. This proposed algorithm

improves the computational time by using additional information. This information is provided by clustering

regions into the high-low density areas based on the number of blocked nodes on the given grid map while

performing the search from source to destination. The experiments are conducted using 50x50 and 100x100

grid maps with random obstacles of 20% and 50% density. C-Theta* results in path length were shorter than

A* but longer than Theta*, and in runtime C-Theta were faster than Theta* but slower than A*.

 Oh and Long [20] tested the Basic Theta*, Strict Theta*, and Recursive Strict theta* by using taut

paths. Strict Theta* is implemented the same way as Theta*, except with an additional constant-time tautness

check. If the path is not taut, an additional value will be added to the distance. The map that was used was

divided into intro categories. Randomly generated maps used were the size of 500x500, with either 6%, 20%,

or 40% blocked tiles. “Obstacles” maps and maze maps were of the size of 512x512. Game maps were taken

from games like Baldur’s Gate, Starcraft, and Warcraft III. The results show that Strict Theta* found a shorter

path than Theta* with a small cost running time. The Recursive Strict Theta* improves even further and almost

always finds a taut, and thus believably optimal towards the goal.

 Permana et al. [21] created Maze Runner: Angel and Demon, a pathfinding game using C-Theta* for

angel NPC and Player as a Demon. NPC has the objective to find a path to the goal while the Player arranged

obstacles in a 25x25 grid map with the limitation on certain cells that can not be placed as an obstacle to ensure

that NPC will always find the goal. The results have proven that C-Theta* always found a path to the goal if

the solution exists. The summarization of these previous works can be seen in Table 2.

Table 2. Summary of Shortcoming Studies on Theta* Algorithm
No. Author Method Result

1. [15] Path planning in robotics and video games

introduced Basic Theta* and Angle-Propagation
Theta* and compared them with A* and Field D*.

A*, Field D*, and Basic Theta* managed to find a short

path but Basic Theta* does not guarantee to find the real
shortest path. Angle-Propagation was proven to be able

to find a short path but took a longer runtime than Basic

Theta*.
2. [16] Dynamic weight on the Theta* in the two-

dimensional grid maps.

Of the 3 different kinds of Theta*, the Dynamic Weight

Theta* has the lowest runtime on every map but map

50x50 has the highest path time and map 30x30 has the
highest number of nodes visited.

3. [17] Compared A* and Basic Theta* in android games

with 6 levels maps.

While A* and Basic Theta* have the same criteria

completeness and relatively the same time complexity,
the A* algorithm has the advantage of fewer nodes

searched, and Basic Theta* has the advantage of

optimality of the shortest route.

4. [18] Applied A* and Theta* in three-dimensional games

and combined them with Navigation Mesh.

Theta* results were close to the true path found by

humans and the movement looked more natural, but the

times taken by Theta* were longer about 70% than A*.
5. [19] Introduced Cluster Theta*, a variant of Theta* that

used additional information by clustering regions.

C-Theta* results in path length were shorter than A* but

longer than Theta*, and in runtime, C-Theta was faster

than Theta* but slower than A*.

CEPAT Journal of Computer Engineering: Progress, Application, and Technology

A Review of Pathfinding in Game Development (Sara Lutami Pardede)

51

6. [20] Tested the Basic Theta*, Strict Theta*, and

Recursive Strict theta* by using taut paths.

Strict Theta* found a shorter path than Theta* with a

small cost running time. The Recursive Strict Theta*

improved even further and almost always finds a taut,
and thus believably optimal towards the goal.

7. [21] Created Maze Runner: Angel and Demon, a
pathfinding game using C-Theta* for angel NPC and

Player as a Demon.

C-Theta* always found a path to the goal if the solution
exists.

4. DIJKSTRA ALGORITHM

Dijkstra algorithm is an algorithm that is used to find the shortest paths between two nodes by

terminating the process when the objective was achieved. Dijkstra's algorithm is also known as uniform cost

search. It can also be seen as an instance of the more general Best-First Search algorithm [22], [23].

 There is a directed graph G = (V, E) with n nodes and e arcs, where V is the set of nodes and E is

the set of arcs. W=(i,j) is the weight of the arc <i, j>/ If there not exists, W= (i,j) [24]. The algorithm

complexity is presented as O ((V + E) *log(V) = O (E* log(V)) [25]. The illustration is shown in Fig. 3.

Figure 3. Dijkstra Algorithm Demonstration

 Yujin and Xiaoxue used Dijkstra to find the shortest path problem to improve the efficiency of

parking spaces in the parking areas. It implemented the balance function between distance and time. It is also

combined with the impedance function model. Through simulation, it was known that the algorithm is more

optimized by considering the balance of time and distance than by considering one of the factors alone. This

proposed algorithm is reasonable and effective. Moreover, it is also promising to be implemented in the

intelligent parking system [24].

Iqbal et al. [25] used the Modified Dijkstra Shortest Path algorithm (MDSP). This proposed

algorithm uses multiple parameters to find the valid shortest path for road networks where the result was MDSP

algorithms prove that the proposed algorithm efficiently finds the shortest path for the road network with

minimum time complexity.

Bachri et al. [22] used the Dijkstra algorithm and node combination to find the shortest path in

Geographical Information Systems (GIS) where the result is with node combination and Dijkstra algorithm

was succeeded in finding the optimal route in the case study route in Taman Sub-district, Sidoarjo Regency,

East Java, Indonesia. The results show that the travel distance or the travel time formed the starting point to its

destination.

Bozyiğit et al. [26] modified the Dijkstra algorithm for public transport route planning. The objective

was to propose the ideal route for the end-users. This ideal route was commonly used by the passengers. A set

of rules defined on Dijkstra was used to avoid long walking distances and multiple transfers. This study shows

that Dijkstra is the most popular algorithm for finding the shortest path. Meanwhile, this algorithm is not ideal

enough to be implemented in the public transport system. In this work, the penalty is also defined. This

proposed algorithm was tested on the real-world transport network of Izmir. This algorithm is also compared

with the original form of Dijkstra. The result shows that the MDA is much better than Dijkstra Algorithm in

the context of the number of transfers and walking distance.

 ISSN 2963-6728

CEPAT Journal of Computer Engineering: Progress, Application, and Technology, Vol. 1, No. 1, May 2022: 46-55

52

Wang [27] uses three algorithms to compare the shortest path issue where he uses the Dijkstra

algorithm, the Bellman-Ford algorithm, and Floyd–Warshall algorithm where those three algorithms have

different from each other. Dijkstra algorithm was mainly designed for the graph with non-negative weight

nodes. Contrary, the Bellman-Ford algorithm can deal with the shortest path problem with negative weights.

They are used to draw the optimal solution for the shortest path. Ironically, the Bellman-Ford algorithm

produces excessive redundancy, and its efficiency is low. Dijkstra algorithm also can only be used in single-

source shortest path problems. On the other hand, the Floyd-Warshall algorithm is competitive in finding the

shortest path between any two points. The summarization of these previous works can be seen in Table 3.

Table 4. Summary of Shortcoming Studies on BFS Algorithm
No Author Method Result

1. [24] Combine Dijkstra Algorithm with the impedance
function model.

The algorithm is reasonable and effective. Moreover, it
is also promising to be implemented in the intelligent

parking system.
2. [25] Modified Dijkstra Shortest Path algorithm (MDSP). The algorithm efficiently finds the shortest path for the

road network with minimum time complexity.
3. [22] Dijkstra algorithm and node combination. The algorithm is succeeded in finding the optimal route

from starting point to the destination.
4. [26] Modified Dijkstra Algorithm (MDA). The result shows that the MDA is much better than

Dijkstra Algorithm in the context of several transfers

and walking distance.
5. [27] Compare the Dijkstra algorithm, the Bellman–Ford

algorithm, and Floyd–Warshall algorithm.
Bellman-Ford algorithm produces excessive

redundancy, and its efficiency is low.
Dijkstra algorithm also can only be used in single-source

shortest path problems.

Floyd-Warshall algorithm is competitive in finding the
shortest path between any two points.

5. BREADTH FIRST SEARCH ALGORITHM

 Breadth-first Search (BFS) is an algorithm for searching the nodes of a graph in order by their hop

count from the beginning. It is also one of the oldest algorithms and most fundamental graph traversal

algorithms that influence many other algorithms. BFS describes a deterministic way of searching and exploring

the final node. Iterative loops over a queue of vertices are a standard definition of BFS definition [28]. The

illustration of BFS is shown in Fig. 4.

Figure 4. BFS Algorithm Illustration

The complexity of this algorithm can be presented as O (V + E). V represents the number of vertices.

And E represents the number of edges. Moreover, it depends on the data structure that is used to represent the

graph. If it is an adjacency matrix, it will be O (V). If we use an adjacency list, it will be O (V+E) [29].

Sularno et al. [30] studied to determine the shortest route to the shelter that can be used for the people

when a disaster came by using the BFS algorithm. The reason why the authors chose the BFS algorithm was

that it uses another heuristic algorithm, because in terms of the distance of the route. This theory will be

implemented on a mobile application using Global Positioning System (GPS) and Geographic Information

System (GIS) software to do the mapping process in real-time. Using the BFS algorithm as a basis, the result

of the test was very precise and can be applied to real applications.

Permana et al. [13] compared the BFS algorithm with A*, DFS, Dijkstra, and Breadth-First Search

(BFS) in the maze runner game. There are 3 variables that will be measured on the pathfinding computation;

process time, the length of the path, and the number of blocks played. Time will be measured in milliseconds

CEPAT Journal of Computer Engineering: Progress, Application, and Technology

A Review of Pathfinding in Game Development (Sara Lutami Pardede)

53

(ms) where the counting will start from start-node to destination-node when the NPC starts to move. The map

is to be used as a 2D map with a lot of variations of obstacles. There will be dynamic obstacles, static obstacles,

and a combination of those two. As the result, A* is the best algorithm when used in maze games because of

the minimal computing process and time taken to the final point but BFS has a similar result to A*, the big

difference is that BFS has more wasteful computers process than A*.

Palanisamy and Vijayanathan [29] addressed Multi-Agent System (MAS) to create a new method

for finding the shortest route while using the BFS algorithm. They converted the graphs into several clusters

by using the bi-connected region method and assigning AI to each cluster to perform the breadth-first search.

The result shows that using clusters can significantly increase the calculation time.

Zhang et al. [31] used the BFS to integrate the architectures of CPU and GPU using different

traversal orders. The BFS implementation can process graphs of more than 67 million vertices and one billion

edges, and it is executed at approximately 2.1 GTEPS on a single integrated architecture. And then, the result

of this study also showed that the energy efficiency of BFS was better than state-of-the-art BFS on integrated

architectures.

Lina et al. [32] compared BFS with Depth Limited Search (DLS) algorithm in Sudoku game. Sudoku

is a puzzle game from Japan that consists of 81 squares consisting of 9 columns and 9 rows. The players will

fill the box with numbers 1 to 9 and there must be no repetition of numbers in one column. After conducting

the conclusions, it was said that the DLS algorithm was more efficient and faster than the BFS algorithm. BFS

has its own advantages such as it was more structured and systematic that is able to find all possible numbers

in each box, but it requires a lot of computer-memory processes. The drawback of this research is that it is only

limited to a 3x3 level of Sudoku.

Ramadhani et al. [33] studied the implementation of the Breadth-First Search (BFS) algorithm in

the darkness maze games based on desktop intelligent agents. This research has 6 stages: concept, design,

material collecting, assembly, testing, and distribution. The first stage; concept is a stage for determining the

objectives and who is the that will be the user. Design is a stage for making specifications regarding

recruitments for the program. Material collecting is a stage for collecting the components that will be needed

in the development process. Assembly is a stage for making all the materials. Testing is a stage to check whether

the application has errors or not. Lastly, distribution is a stage for multiplying the results that have been granted.

This study uses the third-person shooter (TPS) genre for its research, to find a patch finder that functions as a

direction and made the non-playable character (NPC) has a sensor and actuator. This made the NPC will know

the position of the player through the environment around. The summarization of these previous works can be

seen in Table 4.

Table 4. Summary of Shortcoming Studies on BFS Algorithm
No. Author Method Result

1. [30] Determine the shortest route to the shelter that can

be used for the people when disaster came by using

the BFS algorithm

The result of the test was very precise and can be applied

to real applications by using the Global Positioning

System (GPS) and Geographic Information System
(GIS)

2. [13] Compared the BFS algorithm with A*, DFS,

Dijkstra, and Breadth-First Search (BFS) in the

maze runner game

A* is the best algorithm when used in maze games

because of the minimal computing process and time

taken to the final point but BFS has a similar result to A*,
the big difference is that BFS has a more wasteful

computers process than A*

3. [29] Using Multi-Agent System (MAS) to create a new

method for finding the shortest route while using the

BFS algorithm

The result shows that using clusters can significantly

increase the calculation time

4. [31] Used the BFS to integrate the architectures of CPU

and GPU using different traversal orders

The energy efficiency of BFS was better than state-of-

the-art BFS on integrated architectures

5. [32] compared BFS with Depth Limited Search (DLS)

algorithm in Sudoku game

DLS algorithm was more efficient and faster than the

BFS algorithm, but BFS has its own advantages such as

it was more structured and systematic that can find all
possible numbers in each box

6. [33] Studied the implementation of the Breadth-First

Search (BFS) algorithm in the darkness maze games
based on desktop intelligent agent

This study uses the third-person shooter (TPS) genre for

its research, to find a patch finder that functions as a
direction and made the non-playable character (NPC) has

a sensor and actuator that will make the NPC will know

the position of the player through the environment
around

 ISSN 2963-6728

CEPAT Journal of Computer Engineering: Progress, Application, and Technology, Vol. 1, No. 1, May 2022: 46-55

54

6. CONCLUSION

This work has demonstrated the discussion of pathfinding, especially for four well-known algorithms:

A*, Theta*, Dijkstra, and BFS. This study also shows that these algorithms are still used widely in many

shortcoming studies related to pathfinding, especially in game development. Moreover, these four old-

fashioned algorithms have been modified and combined with other methods, such as multi-agent systems,

metaheuristics, and so on. These algorithms are also implemented in a broader area. This work also shows that

each of these algorithms has its own advantages and disadvantages so the selection of these algorithms is based

on the nature of the problem that is tried to solve or the environment where this algorithm will be implemented.

This dilemma often lies in the performance and the computational resource. As a result, these four algorithms

are highly recommended to be implemented in future studies or works in pathfinding and autonomous

movement. Moreover, the implementation and improvisation of these algorithms in a broader area are

challenging. Studies conducting the hybridization of this algorithm with algorithms are also interesting.

REFERENCES

[1] Y. Sazaki, H. Satria and M. Syahroyni, "Comparison of A and dynamic pathfinding algorithm with

dynamic pathfinding algorithm for NPC on car racing game," in 11th International Conference on

Telecommunication Systems Services and Applications (TSSA), 2017.

[2] D. Kurniadi, A. Mulyani and R. S. Maolani, "Implementation of Pathfinding Algorithm in Sundanese

Land History Educational Game," in 2nd International Conference on Innovative and Creative

Information Technology (ICITech), 2021.

[3] G. T. Galam, T. P. Remedio and M. A. Dias, "Viral Infection Genetic Algorithm with Dynamic

Infectability for Pathfinding in a Tower Defense Game," in 18th Brazilian Symposium on Computer

Games and Digital Entertainment (SBGames), 2019.

[4] L. Husniah, R. Mahendra and A. S. Kholimi, "Comparison Between A* And Obstacle Tracing

Pathfinding In Gridless Isometric Game," in 2018 5th International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI), 2018.

[5] A. N. Sabri, N. H. Radzi and A. A. Samah, "A study on Bee algorithm and A algorithm for pathfinding

in games," in 2018 IEEE Symposium on Computer Applications & Industrial Electronics (ISCAIE), 2018.

[6] J. Smołka, K. Miszta, M. Skublewska-Paszkowska and E. Łukasik, "A* pathfinding algorithm

modification for a 3D engine," in III International Conference of Computational Methods in Engineering

Science (CMES’18), 2019.

[7] L. Husniah, R. Mahendra, A. S. Kholimi and E. Cahyono, "Comparison Between A And Obstacle

Tracing Pathfinding In Gridless Isometric Game," in 2018 5th International Conference on Electrical

Engineering, Computer Science and Informatics (EECSI), 2018.

[8] T. Subrando, D. Fitrianah and F. A. Prasetyatama, "Implementation of a* algorithm within navigation

mesh in an artificial intelligence based video games," in International Journal of Engineering &

Technology (IJET), 2018.

[9] Y. Sazaki, H. Satria and M. Syahroyni, "Comparison of A and dynamic pathfinding algorithm with

dynamic pathfinding algorithm for NPC on car racing game," in 2017 11th International Conference on

Telecommunication Systems Services and Applications (TSSA), 2017.

[10] A. Candra, M. A. Budiman and R. I. Pohan, "Application of A-Star Algorithm on Pathfinding Game," in

5 th International Conference on Computing and Applied Informatics (ICCAI 2020), 2020.

[11] P. Harsani, I. Mulyana and D. Zakaria, "Fuzzy logic and A* algorithm implementation on goat foraging

games," in IOP Conference Series: Materials Science and Engineering., 2017.

[12] N. Barnouti, S. Al-Dabbagh and M. Naser, "Pathfinding in Strategy Games and Maze Solving Using A*

Search Algorithm," in Journal of Computer and Communications, 2016.

[13] S. Permana, B. Arifitama, K. Bintoro and A. Syahputra, "Comparative Analysis of Pathfinding

Algorithms A *, Dijkstra, and BFS on Maze Runner Game," International Journal of Information System

and Technology, vol. 1, no. 2, 2018.

[14] Y. F. Yiu, J. Du and R. Mahapatra, "Evolutionary Heuristic A Search: Heuristic Function Optimization

via Genetic Algorithm," in 2018 IEEE First International Conference on Artificial Intelligence and

Knowledge Engineering (AIKE), 2018.

CEPAT Journal of Computer Engineering: Progress, Application, and Technology

A Review of Pathfinding in Game Development (Sara Lutami Pardede)

55

[15] K. Daniel, A. Nash, S. Koenig and A. Felner, "Theta*: Any-Angle Path Planning on Grids," in arXiv e-

prints, 2014.

[16] B. P. Le and L. Ki-dong, "Applying Dynamic Weight on Theta Star Path-finding Algorithm in 2D Grid

Map," in 2015 International Conference on Intelligent Computing, Electronics System and Information

Technology, 2015.

[17] E. R. Firmansyah, S. U. Masruroh and F. Fahrianto, "Comparative Analysis of A and Basic Theta

Algorithm in Android-Based Pathfinding Games," in 6th International Conference on Information and

Communication Technology for The Muslim World (ICT4M), 2016.

[18] P. T. Le, N. T. Truong, M. S. Kim, W. So and J. H. Jung, "Applying Theta* in Modern Game," Journal

of Computers, vol. 13, no. 5, 2018.

[19] P. Mendonca and S. Goodwin, "C-Theta: Cluster Based Path-Planning on Grids," in 2015 International

Conference on Computational Science and Computational Intelligence (CSCI), 2015.

[20] S. Oh and H. W. Leong, "Strict Theta*: Shorter Motion Path Planning Using Taut Paths," in Twenty-

Sixth International Conference on Automated Planning and Scheduling (ICAPS 2016), 2016.

[21] S. D. Permana, K. B. Bintoro, B. Arifitama and A. Syahputra, "Maze Runner : Angel and Demon Path

Finding Game Application using C-Theta* Algorithm," in The 1st International Conference on

Computer Science and Engineering Technology, 2018.

[22] A. Fitro, O. S. Bachri, A. I. S. Purnomo and I. Frendianata, "Shortest path finding in geographical

information systems using node combination and dijkstra algorithm," International Journal of

Mechanical Engineering and Technology (IJMET), vol. 9, no. 2, pp. 755-760, 2018.

[23] G. Qing, Z. Zheng and X. Yue, "Path-planning of Automated Guided Vehicle based on Improved

Dijkstra," in 2017 29th Chinese Control And Decision Conference (CCDC), 2017.

[24] Yujin and G. Xiaoxue, "Optimal Route Planning of Parking Lot Based on Dijkstra Algorithm," in

International Conference on Robots & Intelligent System, 2017.

[25] M. Iqbal, K. Zhang, S. Iqbal and I. Tariq, "A Fast and Reliable Dijkstra Algorithm for Online Shortest

Path," SSRG International Journal of Computer Science and Engineering (SSRG – IJCSE), vol. 5, no.

12, 2018.

[26] A. Bozyiğit, G. Alankuş and E. Nasiboğlu, "Public Transport Route Planning: Modified Dijkstra's," in

International Conference on Computer Science and Engineering (UBMK), 2017.

[27] X. Z. Wang, "The Comparison of Three Algorithms in Shortest Path Issue," in Journal of Physics

Conference Series, 2018.

[28] H. Jason, "The Nature of Breadth-First Search," in School of Computer Science, Mathematics, and

Physics James Cook University Australia, 2019.

[29] V. Palanisamy and S. Vijayanathan, "Cluster Based Multi Agent System for Breadth First Search," in

2020 20th International Conference on Advances in ICT for Emerging Regions (ICTer), 2021.

[30] S. Sularno, D. P. Mulya, R. Astri and D. Mulya, "Determination of The Shortest Route Based on BFS

Algorithm for Purpose to Disaster Evacuation Shelter," Scientific Journal of Informatics, vol. 8, no. 1,

2021.

[31] F. Zhang, H. Lin, J. Zhai, J. Cheng, D. Xiang, J. Li, Y. Chai and X. Du, "An Adaptive Breadth-first

Search Algorithm on Integrated Architectures," The Journal of Supercomputing, vol. 74, p. 6135–6155,

2018.

[32] T. N. Lina and M. S. Rumetna, "Comparison Analysis of Breadth First Search and Depth Limited Search

Algorithms in Sudoku Game," Bulletin of Computer Science and Electrical Engineering, vol. 2, no. 2,

pp. 74-83, 2021.

[33] S. Ramadhani, H. Barholomius and E. Hanifah, "Implementation of the Breadth First Search Algorithm

in the Darkness Maze Game Based on Desktop Intelligent Agent," TEPIAN Agricultural Polytechic of

Samarinda, vol. III, no. 2, pp. 125-129, 2021.

