
Int. Journal of Applied IT Vol. 03 No. 01 (2019) 

  

 
 

International Journal  
of Applied Information Technology 

 
http://journals.telkomuniversity.ac.id/ijait/ 

  

 

Survey of SLAM in Low-Resource Hardware 
 
Ismail 

School of Applied Science, Telkom University, Indonesia 

ismailrusli@telkomuniversity.ac.id 

 

A R T I C L E  I N F O   A B S T R A C T  

Received 04 June 2018 

Revised 12 October 2018 
Accepted 22 October 2018 

Available online 26 October 2019 

 
 

 

 
 

 

 
Keywords 

SLAM, embedded system, low-

resourced hardware 

 
Many of researches in Simultaneous Localization and Mapping (SLAM) are targeting 

desktops or laptop computers. Mounted in a robot platform such as Pioneer, these high 

computational power hardware do all the processing in SLAM. Still others, SLAM 

algorithms exploit GPU power to provide deep details in map reconstruction. Yet, it is 

desirable to deploy SLAM in a small robot without advantages from high computational 

power hardware. Single board computers with limited power supply and low computing 

power are the main boards that are often available in small robots. Therefore, it is important 

to consider the design solution of SLAM that targets such a system. This research presents a 

survey paper of SLAM in low-resource hardware. The main question to be answered is 

"How researchers deal with hardware limitation when implementing SLAM?” 

Classification based on a method to tackle the problem is presented as the conclusion of this 

paper. 
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1. Introduction 

In order to navigate autonomously, a mobile robot should have knowledge of 

its surrounding environment. Otherwise, it must have the capability to develop a 

model of the environment while localizing itself simultaneously. This problem is 

known as Simultaneous Localization and Mapping (SLAM). 

Theoretically, SLAM is considered solved. However, several important issues 

have to be considered [1]: 

1. Can there be dynamic objects? 

2. Can we not only ignore them but include them in the model in some 

useful way? 

3. Can it be done in real time for very large environments? 

4. Can we monitor and update changes in the environment? 

5. Can we compute semantically meaningful models, not just geometric 

models? 

Typically, new SLAM algorithms run in mid to high processing power 

computer, i.e., desktop or laptop. Some even use GPGPU to satisfy high 

processing demand. In other hands, SLAM can be implemented in low-resource 

hardware (low-clocked processor, megabytes of RAM, and low-cost sensors) that 

is desirable for consumer products such as a robot to mop or sweep the floor in an 

indoor environment. 

There are only a small number of works that are targeting SLAM in low-

resource hardware specifically. This is reflected in a number of links returned 

from Google Scholar search with the keyword: "intitle:+slam low resourced 

hardware low cost". After manual selection, this paper reviewed 16 from those 

papers which work specifically on SLAM in low-resource hardware.  

This paper continues as follows. Section 2 describes the mathematical 

framework of SLAM. Section 3 contains short descriptions of works in SLAM 

targeting constrained hardware.  Finally, the conclusion is described in Section 4. 

2. Formulation of SLAM 

Mathematically, SLAM is formulated as a problem to calculate following joint 

probability distribution: 

 

𝑝(𝑥0:𝑘, 𝑚|𝑧1:𝑘 , 𝑢1:𝑘) (1) 

 

With 𝑥0:𝑘 = {𝑥𝑖}𝑖=0
𝑘  is the history of robot pose. 𝑚 is the representation of the 

environment inform of a map. Then, 𝑧1:𝑘 = {𝑧𝑖}𝑖=1
𝑘  is a history of measurements, 

and 𝑢1:𝑘 = {𝑢}𝑖=1
𝑘  is a history of control given to the robot.  

Probability distribution in (1) estimates the robot's pose (position and 

orientation) in each time step while simultaneously estimates a map of the robot's 

environment. By considering the Dynamic Bayesian Network in Figure 1, the 

probability distribution could be factorized [2] 

 

𝑝(𝑥0:𝑘 , 𝑚|𝑧1:𝑘, 𝑢1:𝑘) ∝ 𝑝(𝑥0) ∏ 𝑝(𝑥𝑖| 𝑥𝑖−1, 𝑢𝑖) ∏ 𝑝(𝑧𝑖|𝑥𝑖 , 𝑚𝑂(𝑖))𝑘
𝑖=1

𝑘
𝑖=1  (2) 

 

With 𝑚𝑂(𝑖) represents the set of all map elements observed at i-th time step. 
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Figure 1 Dynamic Bayesian Network for SLAM Problem 

 

We could filter the problem by estimating only the current robot's pose instead 

of the full path of the robot. This filtering problem is formulated in (3). 

 

𝑝(𝑥𝑘 , 𝑚 |𝑧1:𝑘, 𝑢1:𝑘 , 𝑥0) (3) 

 

Assuming the Markovian process and using Bayesian theorem, (3) could be 

formulated in a recursive form, i.e. Recursive Bayesian Filter 

 

𝑝(𝑥𝑘 , 𝑚|𝑧1:𝑘 , 𝑢1:𝑘) ∝

𝑝(𝑧𝑘|𝑥𝑘 , 𝑚) ∫ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘)𝑝(𝑥𝑘−1, 𝑚|𝑧1:𝑘−1, 𝑢1:𝑘−1)𝑑𝑥𝑘−1𝑥𝑘−1
 (4) 

 

with 𝑝(𝑧𝑘|𝑥𝑘 , 𝑚) is sensor model and 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) is the robot's motion 

model. 

In general, there is no analytical solution to (4) due to arbitrary form of 

distribution inside an integral part. However, by assuming that the form of 

𝑝(𝑥𝑘−1, 𝑚|𝑧1:𝑘−1, 𝑢1:𝑘−1) is Gaussian and the system is linear (or approximated 

as linear), the problem could be solved analytically. This is Kalman Filter 

(Extended Kalman Filter). Relaxing the assumptions, we could get the sub-

optimal solution of SLAM by numerical methods [3][4]. 

Typically, EKF-based SLAM has 𝑂(𝐿3) complexity [2] with 𝐿  denotes the 

number of landmarks. This is undesirable since the requirement of real-time then 

will not be achievable in a large-scale environment. 

FastSLAM or SLAM with particle filter performs better in term of time 

complexity. According to [2], SLAM with Rao-Blackwellized Particle Filter 

(RBPF) has 𝑂(𝐿𝑁), with 𝐿 is the number of map elements, and 𝑁 is the number 

of the particle. It seems that particle filter is a candidate to choose if one wants to 

implement SLAM in low-resource hardware. However, SLAM based on particle 

filter also has its own drawback, because ideally, the number of the particles 

should be exponentially increased if the map is getting larger. This makes particle 

filter faces a similar problem with EKF-based SLAM. 

Bayesian filtering method was state-of-the-art in the early years of SLAM 

researches. However, as camera getting popular in robotics, visual SLAM 

attracted many researchers and they found a way to use techniques such as 

Bundle Adjustment to attack SLAM problems. This technique, for example, was 

popularized by works of Klein [5]. Recently, the availability of RGB-D camera, 

also introduced novel dense technique to SLAM, dubbed Dense SLAM [6][7]. 
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3. SLAM in Low-Resource Hardware 

Table 1 shows hardware usages for several most-cited SLAM algorithms. The 

table shows that SLAM algorithms are designed with no consideration of 

optimization for low-resource hardware (except for LSD-SLAM which has been 

implemented in smartphone although works only for visual odometry). 

 

 Table 1 Hardware Usage in SLAM with Relevant Notes on Time and Space Complexities 

Paper Hardware Note 

MonoSLAM 

EKF [8] 

1.6GHz Pentium 

M Processor 

Total processing of each frame is 

19ms 

FastSLAM[3][4] 
1GHz Pentium 

PC 

With 100 particles and 1M landmarks, 

the memory needed to store map is 

about hundreds of megabytes [4] 

PTAM[5] 
Intel Core 2 Duo 

2.66GHz 

Used in a small workspace for AR 

application, the algorithm is able to 

operate real-time in a smartphone 

(2.3GHz quad-core CPU).  

KinectFusion[9] 

Kinect sensor 

and commodity 

GPGPU 

The time needed to reconstruct the 

environment of the volume 3m3 with 

5123 voxels resolution is about 25ms 

LSD-SLAM[7] CPU 

Real-time. The visual odometry 

algorithm is optimized for NEON 

architecture [10] 

ORB-

SLAM[11] 

Intel Core-i7-

4700 MQ (4 

cores @2.4GHz) 

with 8GB RAM 

In average, for New College Dataset, 

ORB-SLAM takes 31.60ms for 

tracking and 464.27ms for local 

mapping 

 

The following paragraphs review the papers in SLAM for low-resource 

hardware. Table 2 shows the summary.  

Abrate, et. al. [12] experimented with an IR-only sensor to equip a mobile 

mini robot with EKF-SLAM. There was no optimization in the algorithm and the 

results showed that the sparse and noisy nature of the data acquired from the IR 

sensor limit the success of SLAM. 

Bonato, et. al [13] implemented the EKF-SLAM that was targeting an 

embedded system based on an FPGA (Field-Programmable Gate Array) device. 

This work was not aimed at designing a new algorithm. After profiling EKF-

SLAM, the authors implemented the most time-consuming part of the algorithm 

in hardware by using C2H (C-to-Hardware) module or design custom instruction 

set attached directly to ALU of the main microprocessor (softcore processor). The 

result is still considerable poor compare to that of standard PC work on 3 GHz 

clock CPU (The experiment used Altera NIOS II microprocessor with the clock 

of 50 MHz). 

Beevers, et. al. [14] tried to cut the computational cost of SLAM by 

implementing a particle filter with fixed-point constraint. As Abrate, et. al. [12], 

they were targeting small mini consumer-oriented robot. With infrared 

rangefinders and microcontroller as the main processor, the result showed that the 

capability of the robot to close to the loop in the area of 2m ×2.5m. However, the 

SLAM would take as long as half a minute for every step of prediction and 

update which is far from real-time capability. 

Gifford et. al [15] used multi-robot to handle area larger than a small robot 

with SLAM could handle. The author claimed that each of their robot cost as low 

as $1250. The author made the scenario of planetary exploration by using the 

multi small low-cost robot. Several sensors were employed obviously to reach the 
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goal of making a low-cost robot. For example, instead of using a costly 

rangefinder, the author used 6 IR sensors separated 30o to cover 180oFOV. To 

tackle uneven terrain typical in the planetary surface, the robots also were 

equipped by gyroscope and accelerometer in addition to odometry to track robot's 

pose. All those sensors provide data to DP-SLAM algorithm [16] [17]. With 

GumstixVerdex XL6P (600 MHz, 128 MB RAM, 32 MB Flash) as the main 

processor, the system was able to process every timestep in 3 seconds and 10 

seconds for 15 and 25 particles respectively. 

The success of SLAM usually relies on accurate sensors. In contrast to that, 

Yap [18] considered the low-cost and noisy sensors, i.e. sonar, to build SLAM. 

Although this research was not about the usage of low computational power, 

using low-cost sonar is in line with our aim to provide the survey in an attempt to 

make SLAM accessible in low-resource hardware. 

Based on particle filter, the research resulted in accurate tracking and mapping 

task. One main assumption was orthogonality of the shape of the environment.   

Four types of test were done in 3 test environments, i.e. tracking with 

odometry, tracking and mapping without the assumption of orthogonality, and 

using occupancy grid map instead of the particle filter.   

Eade [19] proposed techniques for bounding the SLAM graph complexity 

during operation, using variable elimination and constraint pruning with heuristic 

schedules. The system consisted of a graph SLAM optimization engine in the 

back end and the view creation/recognition engine at the front end. As time goes 

by, the created view grows larger and burden both the storage of the system and 

the recognition process if the robot visited the previous place. The key ideas of 

the author were to bind this growth in the graph by removing nodes and limiting 

connectivity between nodes. The nodes were removed by doing marginalization 

while limiting connectivity was done by queuing priority nodes with degrees 

(number of edges) exceeding a predetermined value and pruning the edge from 

the queued nodes until no node degrees exceed the bound. The author did not 

show the performance of the system presented in the form of how fast the 

algorithm works in the robot platform. Instead, they showed how the proposed 

key ideas could reduce graph complexity while keep maintaining the accuracy of 

SLAM.   

Vinckeet. al. [20] presented a solution to the implementation of SLAM in an 

embedded system by co-design hardware architecture, feature detector, SLAM 

algorithm, and optimization methodology. The SLAM algorithm was used based 

on EKF-SLAM. The optimization was done by trying several feature detectors 

and use the best one. The author developed system architecture with different 

processors (RISC processor, DSP, GPU) and a co-processor for data pre-

processing. The conclusion of the research is that FAST feature detector 

surpasses Shitomasi and Harris corner detector in term of performance. 

Magnenat [21] proposed a solution to SLAM problem for affordable hardware 

by co-design a slim rotating distance scanner, a lightweight SLAM software, and 

an optimization technology. The SLAM was based on FastSLAM 2.0 that run in 

real-time on a miniature robot. 

Spampinatoet. al. [22] used FPGA to create an embedded stereo vision 

module for 6D pose estimation and mapping. The stereo vision system was made 

of two 5-megapixels CMOS digital image sensors from Micron (MT9P031) and a 

Spartan-3A-DSP FPGA with 1800K system gates, 84 block RAM (18KB each) 

and 84 DSP 48A blocks. 

SLAM algorithm used was based on EKF. With the ability to estimate pose in 

6DoF, and the system was able to operate in unlevel terrain.  
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Buonocore, et. al. [23] used a particle filter with sensor data fusion algorithm. 

He used a web camera with laser-pointer, an infrared sensor, and an ultrasonic 

sensor. The robot is equipped with autonomously exploration algorithm that 

makes the path that was taken by the robot follows a certain rule. The experiment 

was conducted in an indoor area with the size of 8.8m×2.8m. The results were 

comparable to the robot without the automatic exploration algorithm. 

Gutmannet. al. [24] presented the method of localization based on the spatial 

variation of continuous signals coming from beacons. The signal was modeled by 

using SLAM, which the author has experimented with 3 algorithms, i.e. EKF-

SLAM, graphSLAM, and Exactly Sparse Extended Information Filter SLAM 

(ESEIF-SLAM). The proposed method was evaluated on an embedded on an 

ARM 7 embedded board with 64 KB RAM connected to Roomba 510 vacuum 

cleaner.  

Although the processing power was frequently limited, several single board 

computers were equipped with the SIMD architecture. It was desirable for SLAM 

to be able to get benefit from this architecture. Vinckeet. al. [25] presented the 

efficient EKF-SLAM algorithm in multi-core embedded system. They evaluated 

the algorithm by partitioning it into several functional blocks (FB), then 

determined each processing time by integrated cycle counter register (CCNT) of 

the ARM processor. The FB with high processing time then reimplemented into 

the multi-core architecture. The author exploited the SIMD architecture in ARM 

processor (NEON) and its DSP-module. The author showed that the matching and 

estimation tasks that have been executed within NEON environment gained 

significant performance boosting against similar FB executed in ARM processor.  

Lee and Lee [26] used the upward looking camera for visual SLAM along 

with odometry. This configuration was adopted in ARM11 hardware targeting 

SLAM in low-cost consumer robots. Constructed for indoor environment, the 

pose graph optimization was used as it was known as a successful method in 

SLAM for the large-scale environment. However, with the proposed method, 

called visual compass, the author showed that the pose graph optimization 

complexity has been reduced to a significant amount makes it suitable for the 

embedded system implementation. 

Tripicchio [27] used modified FastSLAM 2.0 [4] to build SLAMCGS, an 

algorithm targeting SLAM in low-resource hardware. They used laser 

rangefinders and IMU as sensors in Micro Aerial Vehicle (MAV) making a 

survey of the indoor environment. The results showed that their algorithm was 

robust against sensor noise and the delay between signals acquired was 

comparable to that of FastSLAM 2.0 in terms of execution speed and CPU load. 

Nikolicet. al. [28] equipped their MAV with 4 cameras as well as IMU sensor 

to get robust and accurate pose-estimation and mapping. The real-time 

performance achieved by mitigating the most time-consuming part of the 

algorithm, i.e. image processing, to FPGA hardware. 

Dine et. al. [29] presented a temporal analysis in graph-based SLAM in 

OMAP embedded architecture. The authors compared they work to known graph 

optimization framework, i.e. g2o [30]. The key to achieving efficacy in the 

algorithm was reached by the optimized data structure and efficient memory 

access management. Implemented in multi-core architecture, the proposed 

optimized algorithm was comparable and even perform better than the g2o 

framework. 
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 Table 2 SLAM in Low-Resourced Hardware 

Paper Hardware Sensors Description 

[12] Khepera II IR Achieved limited success in SLAM 

[13] 
FPGA (main microprocessor 

is Altera NIOS II 50MHz) 

1-4 CMOS Camera 

Modul 

Implementing the EKF-SLAM algorithm in 

hardware and in the custom instruction set 

[14] 
Ratbot (ATMega64 88-bit 

16MHz) 
Infrared rangefinders 

Success in detecting loop closures. SLAM takes 

half a minute each step. 

[15] 

GumstixVerdex XL6P 

(600MHz, 128 MB RAM, 

32MB Flash) 

6 Infra Reds, 3-axis 

accelerometer, and 3-

axis gyroscope 

Implemented in the multi-robot system in the 

scenario to explore a planetary surface 

[18] IBM ThinkPad X32 16 sonars 

Able to track and map accurately with 

orthogonality of the environment’s shape 

assumption 

[19] N/A 
Web camera, wheel 

odometry 

Reducing graph complexity while maintaining its 

accuracy 

[20] GPU, ARM Cortex A8, DSP 
Inertial Measurement 

Unit, odometry, camera 

Using EKF-SLAM with different feature 

detectors 

[21] ARM 11 533MHz 
Rotating scanner 

(infrared) 
- 

[22] FPGA CMOS Camera EKF-SLAM and able to operate in unlevel terrain 

[23] PC IR, webcam, sonar Low-cost sensors with a data fusion algorithm 

[24] ARM 7, 64KB RAM 
Norhstar (optical 

sensing) 
Using active beacons to do localization 

[25] 

ARM Cortex-A 500MHz, 

NEON, DSP 64x processor, 

3D graphics accelerometer 

Camera 
EKF-SLAM. The result of implementation in 

multi-core is compared to a single core. 

[26] ARM11 
Looking upward 

camera 
graphSLAM with a visual compass 

[27] 
OMAP4430, dual-core 

1GHz ARM Cortex-A9 
Laser rangefinders Comparable in speed to that of FastSLAM 2.0 

[28] XILINX FPGA Camera, IMU 
To cut complexity, image processing is processed 

using FPGA hardware 

[29] 
OMAP4430 (Dual core 

ARM Cortex-A9) 
N/A GraphSLAM 

4. Conclusions 

Survey of several papers for SLAM in low-resourced hardware have been 

presented. In general, those works could be categorized into two broad categories, 

i.e., hardware and software optimization. 

1. Hardware optimization 

a. Customizing system architecture (which present in [13] [22] [28]). 

b. Using low-cost low accuracy sensors ([21] [15] [18] [14] [23] [12]). 

2. Software optimization 

a. Reducing complexity ([19]). 

b. Design new algorithm ([24] [26]). 

c. Tweaking software part ([25] [20] [29] [27]). 

All the works surveyed here have succeeded in part of solving the problem of 

implementing SLAM in low-resource hardware. Most of the works run in small 

environments and producing a sparse map that is limited in usage. Following the 

trend in SLAM which is using RGBD sensors to produce a high-quality dense 

map, which is more suitable for robotic applications, is still a great challenge. 

However, the increase of computing power owned by single-board computer 

opens an avenue to fully implement SLAM in a mobile robot with limited 

resources. 
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