
Int. Journal of Applied IT Vol. 03 No. 01 (2019)

International Journal
of Applied Information Technology

http://journals.telkomuniversity.ac.id/ijait/

Survey of SLAM in Low-Resource Hardware

Ismail

School of Applied Science, Telkom University, Indonesia

ismailrusli@telkomuniversity.ac.id

A R T I C L E I N F O A B S T R A C T

Received 04 June 2018

Revised 12 October 2018
Accepted 22 October 2018

Available online 26 October 2019

Keywords

SLAM, embedded system, low-

resourced hardware

Many of researches in Simultaneous Localization and Mapping (SLAM) are targeting

desktops or laptop computers. Mounted in a robot platform such as Pioneer, these high

computational power hardware do all the processing in SLAM. Still others, SLAM

algorithms exploit GPU power to provide deep details in map reconstruction. Yet, it is

desirable to deploy SLAM in a small robot without advantages from high computational

power hardware. Single board computers with limited power supply and low computing

power are the main boards that are often available in small robots. Therefore, it is important

to consider the design solution of SLAM that targets such a system. This research presents a

survey paper of SLAM in low-resource hardware. The main question to be answered is

"How researchers deal with hardware limitation when implementing SLAM?”

Classification based on a method to tackle the problem is presented as the conclusion of this

paper.

* Corresponding author at:

 School of Applied Science, Telkom University,

 Jl. Telekomunikasi No. 1, Terusan Buah Batu, Bandung, 40257, Indonesia.
E-mail address: ismail@tass.telkomuniverity.ac.id

ORCID ID:

Author: 0000-0002-2714-1810

https://doi.org/10.25124/ijait.v3i01.1307

Paper_reg_number IJAIT000030101 2019 © The Authors. Published by School of Applied Science, Telkom University.

This is an open-access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)

https://doi.org/10.25124/ijait.v3i01.1307

2 Int. Journal of Applied IT Vol. 03 No. 01 (2019)

1. Introduction

In order to navigate autonomously, a mobile robot should have knowledge of

its surrounding environment. Otherwise, it must have the capability to develop a

model of the environment while localizing itself simultaneously. This problem is

known as Simultaneous Localization and Mapping (SLAM).

Theoretically, SLAM is considered solved. However, several important issues

have to be considered [1]:

1. Can there be dynamic objects?

2. Can we not only ignore them but include them in the model in some

useful way?

3. Can it be done in real time for very large environments?

4. Can we monitor and update changes in the environment?

5. Can we compute semantically meaningful models, not just geometric

models?

Typically, new SLAM algorithms run in mid to high processing power

computer, i.e., desktop or laptop. Some even use GPGPU to satisfy high

processing demand. In other hands, SLAM can be implemented in low-resource

hardware (low-clocked processor, megabytes of RAM, and low-cost sensors) that

is desirable for consumer products such as a robot to mop or sweep the floor in an

indoor environment.

There are only a small number of works that are targeting SLAM in low-

resource hardware specifically. This is reflected in a number of links returned

from Google Scholar search with the keyword: "intitle:+slam low resourced

hardware low cost". After manual selection, this paper reviewed 16 from those

papers which work specifically on SLAM in low-resource hardware.

This paper continues as follows. Section 2 describes the mathematical

framework of SLAM. Section 3 contains short descriptions of works in SLAM

targeting constrained hardware. Finally, the conclusion is described in Section 4.

2. Formulation of SLAM

Mathematically, SLAM is formulated as a problem to calculate following joint

probability distribution:

𝑝(𝑥0:𝑘, 𝑚|𝑧1:𝑘 , 𝑢1:𝑘) (1)

With 𝑥0:𝑘 = {𝑥𝑖}𝑖=0
𝑘 is the history of robot pose. 𝑚 is the representation of the

environment inform of a map. Then, 𝑧1:𝑘 = {𝑧𝑖}𝑖=1
𝑘 is a history of measurements,

and 𝑢1:𝑘 = {𝑢}𝑖=1
𝑘 is a history of control given to the robot.

Probability distribution in (1) estimates the robot's pose (position and

orientation) in each time step while simultaneously estimates a map of the robot's

environment. By considering the Dynamic Bayesian Network in Figure 1, the

probability distribution could be factorized [2]

𝑝(𝑥0:𝑘 , 𝑚|𝑧1:𝑘, 𝑢1:𝑘) ∝ 𝑝(𝑥0) ∏ 𝑝(𝑥𝑖| 𝑥𝑖−1, 𝑢𝑖) ∏ 𝑝(𝑧𝑖|𝑥𝑖 , 𝑚𝑂(𝑖))𝑘
𝑖=1

𝑘
𝑖=1 (2)

With 𝑚𝑂(𝑖) represents the set of all map elements observed at i-th time step.

 Int. Journal of Applied IT Vol. 03 No. 01 (2019) 3

Figure 1 Dynamic Bayesian Network for SLAM Problem

We could filter the problem by estimating only the current robot's pose instead

of the full path of the robot. This filtering problem is formulated in (3).

𝑝(𝑥𝑘 , 𝑚 |𝑧1:𝑘, 𝑢1:𝑘 , 𝑥0) (3)

Assuming the Markovian process and using Bayesian theorem, (3) could be

formulated in a recursive form, i.e. Recursive Bayesian Filter

𝑝(𝑥𝑘 , 𝑚|𝑧1:𝑘 , 𝑢1:𝑘) ∝

𝑝(𝑧𝑘|𝑥𝑘 , 𝑚) ∫ 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘)𝑝(𝑥𝑘−1, 𝑚|𝑧1:𝑘−1, 𝑢1:𝑘−1)𝑑𝑥𝑘−1𝑥𝑘−1
 (4)

with 𝑝(𝑧𝑘|𝑥𝑘 , 𝑚) is sensor model and 𝑝(𝑥𝑘|𝑥𝑘−1, 𝑢𝑘) is the robot's motion

model.

In general, there is no analytical solution to (4) due to arbitrary form of

distribution inside an integral part. However, by assuming that the form of

𝑝(𝑥𝑘−1, 𝑚|𝑧1:𝑘−1, 𝑢1:𝑘−1) is Gaussian and the system is linear (or approximated

as linear), the problem could be solved analytically. This is Kalman Filter

(Extended Kalman Filter). Relaxing the assumptions, we could get the sub-

optimal solution of SLAM by numerical methods [3][4].

Typically, EKF-based SLAM has 𝑂(𝐿3) complexity [2] with 𝐿 denotes the

number of landmarks. This is undesirable since the requirement of real-time then

will not be achievable in a large-scale environment.

FastSLAM or SLAM with particle filter performs better in term of time

complexity. According to [2], SLAM with Rao-Blackwellized Particle Filter

(RBPF) has 𝑂(𝐿𝑁), with 𝐿 is the number of map elements, and 𝑁 is the number

of the particle. It seems that particle filter is a candidate to choose if one wants to

implement SLAM in low-resource hardware. However, SLAM based on particle

filter also has its own drawback, because ideally, the number of the particles

should be exponentially increased if the map is getting larger. This makes particle

filter faces a similar problem with EKF-based SLAM.

Bayesian filtering method was state-of-the-art in the early years of SLAM

researches. However, as camera getting popular in robotics, visual SLAM

attracted many researchers and they found a way to use techniques such as

Bundle Adjustment to attack SLAM problems. This technique, for example, was

popularized by works of Klein [5]. Recently, the availability of RGB-D camera,

also introduced novel dense technique to SLAM, dubbed Dense SLAM [6][7].

4 Int. Journal of Applied IT Vol. 03 No. 01 (2019)

3. SLAM in Low-Resource Hardware

Table 1 shows hardware usages for several most-cited SLAM algorithms. The

table shows that SLAM algorithms are designed with no consideration of

optimization for low-resource hardware (except for LSD-SLAM which has been

implemented in smartphone although works only for visual odometry).

 Table 1 Hardware Usage in SLAM with Relevant Notes on Time and Space Complexities

Paper Hardware Note

MonoSLAM

EKF [8]

1.6GHz Pentium

M Processor

Total processing of each frame is

19ms

FastSLAM[3][4]
1GHz Pentium

PC

With 100 particles and 1M landmarks,

the memory needed to store map is

about hundreds of megabytes [4]

PTAM[5]
Intel Core 2 Duo

2.66GHz

Used in a small workspace for AR

application, the algorithm is able to

operate real-time in a smartphone

(2.3GHz quad-core CPU).

KinectFusion[9]

Kinect sensor

and commodity

GPGPU

The time needed to reconstruct the

environment of the volume 3m3 with

5123 voxels resolution is about 25ms

LSD-SLAM[7] CPU

Real-time. The visual odometry

algorithm is optimized for NEON

architecture [10]

ORB-

SLAM[11]

Intel Core-i7-

4700 MQ (4

cores @2.4GHz)

with 8GB RAM

In average, for New College Dataset,

ORB-SLAM takes 31.60ms for

tracking and 464.27ms for local

mapping

The following paragraphs review the papers in SLAM for low-resource

hardware. Table 2 shows the summary.

Abrate, et. al. [12] experimented with an IR-only sensor to equip a mobile

mini robot with EKF-SLAM. There was no optimization in the algorithm and the

results showed that the sparse and noisy nature of the data acquired from the IR

sensor limit the success of SLAM.

Bonato, et. al [13] implemented the EKF-SLAM that was targeting an

embedded system based on an FPGA (Field-Programmable Gate Array) device.

This work was not aimed at designing a new algorithm. After profiling EKF-

SLAM, the authors implemented the most time-consuming part of the algorithm

in hardware by using C2H (C-to-Hardware) module or design custom instruction

set attached directly to ALU of the main microprocessor (softcore processor). The

result is still considerable poor compare to that of standard PC work on 3 GHz

clock CPU (The experiment used Altera NIOS II microprocessor with the clock

of 50 MHz).

Beevers, et. al. [14] tried to cut the computational cost of SLAM by

implementing a particle filter with fixed-point constraint. As Abrate, et. al. [12],

they were targeting small mini consumer-oriented robot. With infrared

rangefinders and microcontroller as the main processor, the result showed that the

capability of the robot to close to the loop in the area of 2m ×2.5m. However, the

SLAM would take as long as half a minute for every step of prediction and

update which is far from real-time capability.

Gifford et. al [15] used multi-robot to handle area larger than a small robot

with SLAM could handle. The author claimed that each of their robot cost as low

as $1250. The author made the scenario of planetary exploration by using the

multi small low-cost robot. Several sensors were employed obviously to reach the

 Int. Journal of Applied IT Vol. 03 No. 01 (2019) 5

goal of making a low-cost robot. For example, instead of using a costly

rangefinder, the author used 6 IR sensors separated 30o to cover 180oFOV. To

tackle uneven terrain typical in the planetary surface, the robots also were

equipped by gyroscope and accelerometer in addition to odometry to track robot's

pose. All those sensors provide data to DP-SLAM algorithm [16] [17]. With

GumstixVerdex XL6P (600 MHz, 128 MB RAM, 32 MB Flash) as the main

processor, the system was able to process every timestep in 3 seconds and 10

seconds for 15 and 25 particles respectively.

The success of SLAM usually relies on accurate sensors. In contrast to that,

Yap [18] considered the low-cost and noisy sensors, i.e. sonar, to build SLAM.

Although this research was not about the usage of low computational power,

using low-cost sonar is in line with our aim to provide the survey in an attempt to

make SLAM accessible in low-resource hardware.

Based on particle filter, the research resulted in accurate tracking and mapping

task. One main assumption was orthogonality of the shape of the environment.

Four types of test were done in 3 test environments, i.e. tracking with

odometry, tracking and mapping without the assumption of orthogonality, and

using occupancy grid map instead of the particle filter.

Eade [19] proposed techniques for bounding the SLAM graph complexity

during operation, using variable elimination and constraint pruning with heuristic

schedules. The system consisted of a graph SLAM optimization engine in the

back end and the view creation/recognition engine at the front end. As time goes

by, the created view grows larger and burden both the storage of the system and

the recognition process if the robot visited the previous place. The key ideas of

the author were to bind this growth in the graph by removing nodes and limiting

connectivity between nodes. The nodes were removed by doing marginalization

while limiting connectivity was done by queuing priority nodes with degrees

(number of edges) exceeding a predetermined value and pruning the edge from

the queued nodes until no node degrees exceed the bound. The author did not

show the performance of the system presented in the form of how fast the

algorithm works in the robot platform. Instead, they showed how the proposed

key ideas could reduce graph complexity while keep maintaining the accuracy of

SLAM.

Vinckeet. al. [20] presented a solution to the implementation of SLAM in an

embedded system by co-design hardware architecture, feature detector, SLAM

algorithm, and optimization methodology. The SLAM algorithm was used based

on EKF-SLAM. The optimization was done by trying several feature detectors

and use the best one. The author developed system architecture with different

processors (RISC processor, DSP, GPU) and a co-processor for data pre-

processing. The conclusion of the research is that FAST feature detector

surpasses Shitomasi and Harris corner detector in term of performance.

Magnenat [21] proposed a solution to SLAM problem for affordable hardware

by co-design a slim rotating distance scanner, a lightweight SLAM software, and

an optimization technology. The SLAM was based on FastSLAM 2.0 that run in

real-time on a miniature robot.

Spampinatoet. al. [22] used FPGA to create an embedded stereo vision

module for 6D pose estimation and mapping. The stereo vision system was made

of two 5-megapixels CMOS digital image sensors from Micron (MT9P031) and a

Spartan-3A-DSP FPGA with 1800K system gates, 84 block RAM (18KB each)

and 84 DSP 48A blocks.

SLAM algorithm used was based on EKF. With the ability to estimate pose in

6DoF, and the system was able to operate in unlevel terrain.

6 Int. Journal of Applied IT Vol. 03 No. 01 (2019)

Buonocore, et. al. [23] used a particle filter with sensor data fusion algorithm.

He used a web camera with laser-pointer, an infrared sensor, and an ultrasonic

sensor. The robot is equipped with autonomously exploration algorithm that

makes the path that was taken by the robot follows a certain rule. The experiment

was conducted in an indoor area with the size of 8.8m×2.8m. The results were

comparable to the robot without the automatic exploration algorithm.

Gutmannet. al. [24] presented the method of localization based on the spatial

variation of continuous signals coming from beacons. The signal was modeled by

using SLAM, which the author has experimented with 3 algorithms, i.e. EKF-

SLAM, graphSLAM, and Exactly Sparse Extended Information Filter SLAM

(ESEIF-SLAM). The proposed method was evaluated on an embedded on an

ARM 7 embedded board with 64 KB RAM connected to Roomba 510 vacuum

cleaner.

Although the processing power was frequently limited, several single board

computers were equipped with the SIMD architecture. It was desirable for SLAM

to be able to get benefit from this architecture. Vinckeet. al. [25] presented the

efficient EKF-SLAM algorithm in multi-core embedded system. They evaluated

the algorithm by partitioning it into several functional blocks (FB), then

determined each processing time by integrated cycle counter register (CCNT) of

the ARM processor. The FB with high processing time then reimplemented into

the multi-core architecture. The author exploited the SIMD architecture in ARM

processor (NEON) and its DSP-module. The author showed that the matching and

estimation tasks that have been executed within NEON environment gained

significant performance boosting against similar FB executed in ARM processor.

Lee and Lee [26] used the upward looking camera for visual SLAM along

with odometry. This configuration was adopted in ARM11 hardware targeting

SLAM in low-cost consumer robots. Constructed for indoor environment, the

pose graph optimization was used as it was known as a successful method in

SLAM for the large-scale environment. However, with the proposed method,

called visual compass, the author showed that the pose graph optimization

complexity has been reduced to a significant amount makes it suitable for the

embedded system implementation.

Tripicchio [27] used modified FastSLAM 2.0 [4] to build SLAMCGS, an

algorithm targeting SLAM in low-resource hardware. They used laser

rangefinders and IMU as sensors in Micro Aerial Vehicle (MAV) making a

survey of the indoor environment. The results showed that their algorithm was

robust against sensor noise and the delay between signals acquired was

comparable to that of FastSLAM 2.0 in terms of execution speed and CPU load.

Nikolicet. al. [28] equipped their MAV with 4 cameras as well as IMU sensor

to get robust and accurate pose-estimation and mapping. The real-time

performance achieved by mitigating the most time-consuming part of the

algorithm, i.e. image processing, to FPGA hardware.

Dine et. al. [29] presented a temporal analysis in graph-based SLAM in

OMAP embedded architecture. The authors compared they work to known graph

optimization framework, i.e. g2o [30]. The key to achieving efficacy in the

algorithm was reached by the optimized data structure and efficient memory

access management. Implemented in multi-core architecture, the proposed

optimized algorithm was comparable and even perform better than the g2o

framework.

 Int. Journal of Applied IT Vol. 03 No. 01 (2019) 7

 Table 2 SLAM in Low-Resourced Hardware

Paper Hardware Sensors Description

[12] Khepera II IR Achieved limited success in SLAM

[13]
FPGA (main microprocessor

is Altera NIOS II 50MHz)

1-4 CMOS Camera

Modul

Implementing the EKF-SLAM algorithm in

hardware and in the custom instruction set

[14]
Ratbot (ATMega64 88-bit

16MHz)
Infrared rangefinders

Success in detecting loop closures. SLAM takes

half a minute each step.

[15]

GumstixVerdex XL6P

(600MHz, 128 MB RAM,

32MB Flash)

6 Infra Reds, 3-axis

accelerometer, and 3-

axis gyroscope

Implemented in the multi-robot system in the

scenario to explore a planetary surface

[18] IBM ThinkPad X32 16 sonars

Able to track and map accurately with

orthogonality of the environment’s shape

assumption

[19] N/A
Web camera, wheel

odometry

Reducing graph complexity while maintaining its

accuracy

[20] GPU, ARM Cortex A8, DSP
Inertial Measurement

Unit, odometry, camera

Using EKF-SLAM with different feature

detectors

[21] ARM 11 533MHz
Rotating scanner

(infrared)
-

[22] FPGA CMOS Camera EKF-SLAM and able to operate in unlevel terrain

[23] PC IR, webcam, sonar Low-cost sensors with a data fusion algorithm

[24] ARM 7, 64KB RAM
Norhstar (optical

sensing)
Using active beacons to do localization

[25]

ARM Cortex-A 500MHz,

NEON, DSP 64x processor,

3D graphics accelerometer

Camera
EKF-SLAM. The result of implementation in

multi-core is compared to a single core.

[26] ARM11
Looking upward

camera
graphSLAM with a visual compass

[27]
OMAP4430, dual-core

1GHz ARM Cortex-A9
Laser rangefinders Comparable in speed to that of FastSLAM 2.0

[28] XILINX FPGA Camera, IMU
To cut complexity, image processing is processed

using FPGA hardware

[29]
OMAP4430 (Dual core

ARM Cortex-A9)
N/A GraphSLAM

4. Conclusions

Survey of several papers for SLAM in low-resourced hardware have been

presented. In general, those works could be categorized into two broad categories,

i.e., hardware and software optimization.

1. Hardware optimization

a. Customizing system architecture (which present in [13] [22] [28]).

b. Using low-cost low accuracy sensors ([21] [15] [18] [14] [23] [12]).

2. Software optimization

a. Reducing complexity ([19]).

b. Design new algorithm ([24] [26]).

c. Tweaking software part ([25] [20] [29] [27]).

All the works surveyed here have succeeded in part of solving the problem of

implementing SLAM in low-resource hardware. Most of the works run in small

environments and producing a sparse map that is limited in usage. Following the

trend in SLAM which is using RGBD sensors to produce a high-quality dense

map, which is more suitable for robotic applications, is still a great challenge.

However, the increase of computing power owned by single-board computer

opens an avenue to fully implement SLAM in a mobile robot with limited

resources.

8 Int. Journal of Applied IT Vol. 03 No. 01 (2019)

Bibliography

[1] Udo Frese, "Interview: Is SLAM Solved?," KI - Kunstliche Intelligenz, vol. 24, pp.

255-257, 2010.

[2] Juan-Antonio Fernandez-Madrigal, Simultaneous localization and mapping for

mobile robots: introduction and methods.: IGI Global, 2012.

[3] Michael Montemerlo, Sebastian Thrun, Daphne Koller, Ben Wegbreit, and others,

"FastSLAM: A factored solution to the simultaneous localization and mapping

problem," 2002.

[4] Michael Montemerlo and Sebastian Thrun, FastSLAM: A scalable method for the

simultaneous localization and mapping problem in robotics.: Springer, 2007, vol. 27.

[5] G. Klein and D. Murray, "Parallel Tracking and Mapping for Small AR

Workspaces," in 2007 6th IEEE and ACM International Symposium on Mixed and

Augmented Reality.

[6] Christian Kerl, Jurgen Sturm, and Daniel Cremers, "Dense visual SLAM for RGB-D

cameras," in Intelligent Robots and Systems (IROS), 2013 IEEE/RSJ International

Conference on, 2013, pp. 2100-2106.

[7] Jakob Engel, Thomas Schops, and Daniel Cremers, "LSD-SLAM: Large-scale Direct

Monocular SLAM," in Computer Vision--ECCV 2014.: Springer, 2014, pp. 834-849.

[8] A. J. Davison, I. D. Reid, N. D. Molton, and O. Stasse, "MonoSLAM: Real-Time

Single Camera SLAM," IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 29, pp. 1052-1067, 2007.

[9] Richard A. Newcombe et al., "KinectFusion: Real-time dense surface mapping and

tracking," in 2011 10th

[10] T. Schops, J. Engel, and D. Cremers, "Semi-dense visual odometry for AR on a

smartphone," in 2014 IEEE International Symposium on Mixed and Augmented

Reality (ISMAR)

[11] Raul Mur-Artal, J. M. M. Montiel, and Juan D. Tardos, "ORB-SLAM: a Versatile

and Accurate Monocular SLAM System," IEEE Transactions on Robotics, vol. 31,

pp. 1147-1163, 2015, 00025 arXiv: 1502.00956.

[12] Fabrizio Abrate, Basilio Bona, and Marina Indri, "Experimental EKF-based SLAM

for Mini-Rovers with IR Sensors Only.," in 3rd European Conference on Mobile

Robots, 2007.

[13] Vanderlei Bonato et al., "An FPGA implementation for a kalman filter with

application to mobile robotics," in 2007 International Symposium on Industrial

Embedded Systems, pp. 148-155.

[14] Kristopher R. Beevers and Wesley H. Huang, "An Embedded Implementation of

SLAM with Sparse Sensing," in IEEE International Conference on Robotics \&

Automation (ICRA 2008), 2008.

[15] Christopher M. Gifford et al., "Low-cost multi-robot exploration and mapping," in

2008 IEEE International Conference on Technologies for Practical Robot

Applications, pp. 74-79.

[16] Austin Eliazar and Ronald Parr, "DP-SLAM: Fast, robust simultaneous localization

and mapping without predetermined landmarks" in 2003 Proceedings of the

Eighteenth International Joint Conference on Artificial Intelligence.

[17] Austin Eliazar, Ronald Parr, and others, "DP-SLAM 2.0," in IEEE International

Conference on Robotics and Automation, 2004.

[18] T. N. Yap and C. R. Shelton, "SLAM in large indoor environments with low-cost,

noisy, and sparse sonars," in 2009 IEEE International Conference on Robotics and

Automation.

[19] Ethan Eade, Philip Fong, and Mario E. Munich, "Monocular graph SLAM with

complexity reduction," in Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, 2010, pp. 3017-3024.

[20] Bastien Vincke, Abdelhafid Elouardi, and Alain Lambert, "Design and evaluation of

an embedded system based SLAM applications," in System Integration (SII), 2010

IEEE/SICE International Symposium on, 2010, pp. 224-229.

[21] Stephane Magnenat et al., "Affordable slam through the co-design of hardware and

methodology," in Robotics and Automation (ICRA), 2010 IEEE International

Conference on, 2010, pp. 5395-5401.

 Int. Journal of Applied IT Vol. 03 No. 01 (2019) 9

[22] Giacomo Spampinato et al., "An embedded stereo vision module for 6D pose

estimation and mapping," in Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ

International Conference on, 2011, pp. 1626-1631.

[23] Luciano Buonocore, Cairo Lucio Nascimento Junior, and Areolino Almeida Neto,

"Solving the Indoor SLAM Problem for a Low-Cost Robot using Sensor Data Fusion

and Autonomous Feature-based Exploration.," in ICINCO (2), 2012, pp. 407-414.

[24] J.-S. Gutmann, E. Eade, P. Fong, and M. E. Munich, "Vector Field SLAM -

Localization by Learning the Spatial Variation of Continuous Signals," IEEE

Transactions on Robotics, vol. 28, pp. 650-667, 2012.

[25] B. Vincke, A. Elouardi, A. Lambert, and A. Merigot, "Efficient implementation of

EKF-SLAM on a multi-core embedded system," in IECON 2012 - 38th Annual

Conference on IEEE Industrial Electronics Society

[26] Seongsoo Lee and Sukhan Lee, "Embedded visual SLAM: Applications for low-cost

consumer robots," Robotics & Automation Magazine, IEEE, vol. 20, pp. 83-95,

2013.

[27] Paolo Tripicchio, Matteo Unetti, Nicola Giordani, Carlo A. Avizzano, and Massimo

Satler, "A lightweight slam algorithm for indoor autonomous navigation," in

Australasian Conference on Robotics and Automation, ACRA, 2014.

[28] Janosch Nikolic et al., "A synchronized visual-inertial sensor system with FPGA pre-

processing for accurate real-time SLAM," in Robotics and Automation (ICRA), 2014

IEEE International Conference on, 2014, pp. 431-437.

[29] Abdelhamid Dine, Abdelhafid Elouardi, Bastien Vincke, and Samir Bouaziz,

"Graph-based SLAM embedded implementation on low-cost architectures: A

practical approach," in Robotics and Automation (ICRA), 2015 IEEE International

Conference on, 2015, pp. 4612-4619.

[30] Rainer Kummerle, Giorgio Grisetti, Hauke Strasdat, Kurt Konolige, and Wolfram

Burgard, "g2o: A general framework for graph optimization," in Robotics and

Automation (ICRA), 2011 IEEE International Conference on, 2011, pp. 3607-3613.

