
Int. Journal of Applied IT Vol. 03 No. 02 (2019)

International Journal
of Applied Information Technology

http://journals.telkomuniversity.ac.id/ijait/

Zetcil: Game Mechanic Framework for Unity Game Engine

Rickman Roedavan a, *, Agus Pratondo b, Rio Korio Utoro c, Apriyanti Putri Sujana d

a,b,c,d School of Applied Science, Telkom University, Indonesia

rikman@telkomuniversity.ac.id, pratondo@gmail.com, korioutoro@telkomuniversity.ac.id, putrisujana@telkomuniversity.ac.id

A R T I C L E I N F O A B S T R A C T

Received 23 April 2020
Revised 13 May 2020
Accepted 22 June 2020
Available online 7 July 2020

Keywords:
Game Mechanic Framework, Game
Design Pattern, Unity Game Engine

Games are interactive multimedia products that require programming logic and graphic

design capabilities in the development process. Game development using Unity Game Engine

has become a primary subject in the Multimedia Engineering Technology study program,

School of Applied Sciences, Telkom University. In the initial observation, it was found that

more than 33% of students have difficulties in making a game using the C# language for

Unity. The students understand the Game Design Pattern logic but having difficulty when

applying it into programming codes. This research proposes Zetcil, a Game Mechanic

Framework that simplifies the game development process for the Unity Game Engine. This

framework turned most of the text-based programming commands into visual properties.

Based on research for two years, it concluded that the Zetcil could increase 36% of student's

confidence to develop games prototype rapidly.

* Corresponding author at:
School of Applied Science, Telkom University
Jl. Telekomunikasi No. 1, Terusan Buah Batu, Bandung, 40257
Indonesia
E-mail address: rikman@telkomuniversity.ac.id

ORCID ID:
 First Author: 0000-0003-3169-2663
 Second Author: 0000-0002-6976-7459

https://doi.org/10.25124/ijait.v3i02.2779
Paper_reg_number IJAIT000030211 2020 © The Authors. Published by School of Applied Science, Telkom University.
This is an open-access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)



Int. Journal of Applied IT Vol. 03 No. 02 (2019) 97

1. Introduction

Games are interactive multimedia applications whose primary purpose is for

entertainment needs. It combines programming logic, artificial intelligence (AI),

graphic design, audio and video processing, and storytelling [1]. Moreover, game

mechanisms can also be used to build products in other fields, such as health,

education, military, business, and manufacturing [2][3][4].

Game development has become a subject in several well-known universities in

Indonesia, especially Telkom University. Research on Game Development Life

Cycle (GDLC) becomes a critical knowledge to understand the stages of its

development [5][6].

There are many research studies related to the game development process and

life cycle [7]. The majority of these development models agree that the game

development process can be divided into three main phases, namely pre-

production, production, and post-production.

The game production is a phase that combines elements of logic and art [8].

This phase is very difficult to be mastered by one person at a time. That is why the

concentration of learning game development in universities is divided into two

major parts [9].

The first part contains a discussion of programming logic, including the

implementation of programming codes. This section is discussed in the Informatics

Engineering or Information Systems study program. While the second part contains

a discussion of design and visualization, this section is discussed in the Animation

or Visual Communication Design study program.

Multimedia Engineering Technology is one of the study programs at the Faculty

of Applied Sciences, Telkom University. This study program is a combination of

Informatics Engineering and Visual Communication Design with a focus on

building interactive multimedia applications, one of which is games.

Based on preliminary surveys to 120 respondents using 1-5 rank (1 means not

confidence, and 5 means very confidence), it was found that more than 33% of

Multimedia Engineering Technology students had difficulty learning C#

programming language. Around 44% understood quite well, and only 3.4%

understood the programming language very well. The complete survey results can

be seen in Figure 1.

Figure 1 Preliminary Survey of implementing C# Programming Code

using Visual Studio

Further interviews also found that if the majority of students have difficulty

implementing mechanic game logic into programming code lines. This research

tries to develop a Game Mechanic Framework for Unity Game Engine called

Zetcil. This framework can simplify the game development process by turned most



98 Int. Journal of Applied IT Vol. 03 No. 02 (2019)

of the game programming logic into visual properties. Zetcil is designed using C#

and can be used as a packaged plugin for Unity Game Engine Environment.

This paper comprises five chapters that are organized as follows. Chapter 2 talks

about general explanations related to Interactive Multimedia development. Chapter

3 talks about the analysis and design of the Zetcil. Chapter 4 contains examples of

the implementation and results of the Zetcil testing in lectures. Chapter 5 contains

the matter of conclusions and discussion space for this research.

2. Game Design Pattern

Game design patterns are design patterns that are especially useful for making

games [10]. Understanding game development patterns can accelerate the process

of game development. Usually, all these patterns are implemented into lines of

programming code.

This study tries to find game development solutions that can reduce the text

implementation of programming code. One form of the pattern used in this study

is the MVC (Model, Controller, View). This pattern, as shown in Figure 2, is not

commonly used in most game development process [11] but are very useful to

breaks down the basic components of a game based on a data model,

input/interactions, and visualization.

Figure 2 MVC as Pattern for Game Design

This pattern is somehow in line with some game design framework research

that divided game elements into mechanics, dynamics, and aesthetics [12][13][14].

The game mechanic is algorithms, rules, objects, actions, and other game

components, which are manipulated by game designers to create challenges for

players. Player interactions with game mechanics will create dynamics. These

dynamics, in turn, will affect the player's emotional experience or aesthetics [15].

This pattern also facilitates the process of developing a framework in the Unity

environment. Unity divided the visual and game logic process separately by

default. For the game logic process, Unity has two types of C# scripts, namely the

Runtime script and the Editor script.

Runtime scripts are basic C# scripts that contain common logic and

programming commands [16]. While Script Editor is a special script that functions

to display variables, methods, or events in the form of visual properties, these

scripts can be combined with basic Unity components to form a Prefab. Prefab is a

visual representation of programming code, so this pattern fits perfectly with the

profile of students' capabilities.

3. Proposed Solution

Zetcil is a proposed solution to address student's difficulty in implementing

mechanic game logic into programming code lines. This framework is designed for



Int. Journal of Applied IT Vol. 03 No. 02 (2019) 99

Unity Game Engine Environment and can display various types of the game logic

in visual form. This should make it easier to create and design games without

having to touch scripts or code programming directly [17].

The name Zetcil is taken from the word "jet," which means fast and "cil" which

is a piece of the word "kecil" an Indonesian word of "small." So Zetcil can be

interpreted as a collection of small elements that can help the game development

process become faster.

3.1. Analysis and Design

This study tries to find a core pattern in every existing game mechanic and break

it down into smaller elements [18][19]. This study breaks down the seven most

popular game genres [20]. These game genres are First Person Shooter (FPS),

Action Role Playing Games (ARPG), Side-Scrolling/Platformer, Top-Down

Shooter (TDS), Real-Time Strategy (RTS), Mobile Battle Arena (MOBA), and

Augmented Reality (AR) Battle Card.

The result is a game mechanic that can be broken down into two major parts,

namely General Game Mechanic and Special Game Mechanic. General Mechanic

Games are game functions that can be found in almost every type of game, such as

health bar, score collection, movements, shooting, etc. While the Special Mechanic

Game, which is a mechanic that is rarely found and is usually being a unique game

characteristic, for example, the movement of a slingshot on Angry Bird or tapping

on Flappy Bird.

These two types of game mechanics can break down into several small elements

that have more specific functions. The game mechanic breakdown diagram is

shown in Figure 3.

Figure 3 Game Mechanic Break Down

3.1.1. Data Model and Behavior

This element is a collection of basic data or variables that related to progress in

the game, such as integer, float, string, or boolean. This data also has its own

behavior according to its needs. For example, a timer element must be equipped

with an increment/decrement behavior method, or integer must be equipped with

add or subtract function.



100 Int. Journal of Applied IT Vol. 03 No. 02 (2019)

3.1.2. Game Logic Controller

This element is a collection of basic programming logic. For example, check

the value of a variable and perform other functions needed, looping an array of

data, reading file text or xml configuration, playing sound/video files, or functions

to manage scenes in the game.

3.1.3. User Interaction

This element is a collection of functions related to input interaction with the

user. For example, functions to detect what keyboard keys are pressed, gestures

detection for mobile input such as tap, swipe, rotate, and pinch, or voice recognition

detection.

3.1.4. Collision Handler

This element is a collection of special functions to detect collisions between two

or more sprites/meshes. This function is directly related to the main component in

Unity and will check Rigidbody and Collider calculations for both 2D and 3D

games.

3.1.5. Visual Presentation

This element is a collection of functions that manage the visual aspects of the

game—for example, displaying various UI elements integrated with its own data,

managing Camera movements according to the genre, or adding special effects in

the game that triggered by user input or collision.

3.1.6. Special Behavior and Data Communication

This element is a collection of special functions that contain new game

mechanic designs or modifications to third-party packages, such as Vuforia, Photon

Engine, or Spatial OS. This element should have public variables or methods that

can be integrated and communicate with other elements.

Briefly, how Zetcil works can be seen in Figure 4.

Figure 4 Zetcil Framework Data Flow

Zetcil uses the Data Model and Behavior element as the main input. This

element can also be input into the User Interaction element and the Game Logic

Controller element or directly display the value in the Visual Presentation group.



Int. Journal of Applied IT Vol. 03 No. 02 (2019) 101

Meanwhile, Game Logic Controller will integrate another data form Collision

Handler or Special Behavior and Data Communication element and show it to

visual Presentation, respectively.

3.2. Implementation

Zetcil Game Mechanic Framework developed using C#. At the current stage, it

is divided into six groups consisting of 167 Prefabs, 150 Runtime scripts, and 65

Editor scripts. The following Table 1 shows some examples of Zetcil Prefabs in the

Data Model & Behavior group that functions to manage data.

Table 1 Zetcil Framework: Data Model and Behavior

No Data Model and Behavior Screenshot

1
VarTime Prefab functions to
store and calculate float variables
to show the time/timer function.

2

VarPointer Prefab functions to
detect input from the mouse, read
coordinate values on the screen
and 3D world, and determine
what objects are detected at that
point using Raycast

3

VarManager Prefab functions to
perform basic data management
such as integer, string, float, or
boolean in the form of binary or
XML files.

The following Table 2 shows some examples of Zetcil in the Game Logic

Controller group that functions to manage basic logic in game programming.

Table 2 Zetcil Framework: Game Logic Controller

No Game Logic Controller Screenshot

1

If Controller Prefab functions to
perform a visual version of if-
then-else programming logic,
this prefab can run events
according to user needs.

2

Wait Controller prefab functions
to delay at a certain time before
running other events that the user
needs.

3

Prefab Instantiate Controller
functions to instantiate a
GameObject at runtime. For
example, for making bullet
objects on the firing mechanics.

The following Table 3 shows some examples of Zetcil in the User Interaction

group that function to manage input interactions with users



102 Int. Journal of Applied IT Vol. 03 No. 02 (2019)

Table 3 Zetcil Framework: User Interaction

No User Interaction Screenshot

1

Prefab Input Controller functions
to detect keyboards in three
KeyDown, KeyPress, and
KeyUp states and give choices
on what events to run.

2

Prefab Mobile Tap Rotate
functions to detect a touch on
mobile devices and to do
rotations of certain objects on
horizontal/vertical or both.

3

Prefab Speech Controller
functions to detect input in the
form of sound and run certain
events under voice commands
that are successfully recognized.

4. Experimental Result

This study was conducted for two years to test the validity and quality of Zetcil.

The subject is students of Multimedia Engineering Technology (2018-2019),

Genesis Game Workshop (2018-2019), and international classes in collaboration

with Universiti of Kuala Lumpur (2019).

The results show that although most target students do not have a strong

programmer background, the target students can still build games according to the

game criteria. Zetcil also can speed up the game development process for both

groups and individual users.

The following Table 4 shows some games created by students.

Table 4 Games Built using Unity and Zetcil Framework

No Game Screenshot Description

1

This type of game is the final project
of a basic game programming
course that is done in groups with 3-
4 students per group. The game
itself is a PC-based Action Role
Playing Game (RPG) game genre.
All 3D models used free licensed
models. Then, Animations created
using Mixamo Animation Services.
The main inputs for this game are
the keyboard and mouse.

2

This type of game is the second
assignment for the advanced game
programming course, which is done
individually. The focus is only on
developing mechanical Battle Battle
Arena (MOBA) -like on the Android
platform. The main inputs for this
game are the Android direction pad.

3

This type of game is the final project
of an advanced game programming
course that is done in groups with 3-
4 students per group. This game is
an Android-based Augmented
Reality (AR) Battle Card game. All
3D models used are free licensed
models. Animations created using
Mixamo Animation Services. This



Int. Journal of Applied IT Vol. 03 No. 02 (2019) 103

No Game Screenshot Description

game was built using the Vuforia
SDK with the main input in the form
of markers and virtual buttons.

This study also provides a questionnaire related to the level of confidence in

developing basic games using the Unity Game Engine in 1-5 rank (1 means the

respondent feels unconfidence, and five means the respondent feels confidence).

This questionnaire was distributed to 120 respondents. The questions are:

Q1: How high is your confidence level in developing object-based game levels

(plane, cube, stair, maze) using Unity Game Engine!

Q2: How high is your confidence level in developing terrain game levels

(mountains, trees, grass, lakes) using the Unity Game Engine!

Q3: How high is your confidence level in developing character animations

using Mixamo Animation Services and Animator Controller on the Unity

Game Engine!

Q4: How high is your confidence level in developing games mechanic based

on the Unity Game Engine using your own script!

Q5: How high is your confidence level in developing games mechanic based

on the Unity Game Engine using the Zetcil Framework!

Figure 5-9 shows the result of Question Q1-Q5 respectively

Figure 5 The Result of Question Q1

Figure 6 The Result of QuestionQ2



104 Int. Journal of Applied IT Vol. 03 No. 02 (2019)

Figure 7 The Result of Question Q3

Figure 8 The Result of Question Q4

Figure 9 The Result of Question Q5

Questions Q1, Q2, and Q3 relate to the basic use of Unity to create visual

aspects in games such as terrain, characters, and animation. Most of the students

were confident and were able to do the game development process on this because

it was done visually. Only less than 6% of students find it difficult to do this

process.

While the questions Q4 and Q5 relate to making mechanics and logic in the

game. These two questions produce answers that are inversely proportional. More

than 30% of respondents were not capable in Q4 when requiring to make game

logic using text-based (specifically the C # programming language). While in Q5,

the majority of respondents were able to make game logic based on visuals using

the Zetcil Framework. And only less than 10% of students still find it difficult to

do this process.

The results produced an answer pattern that supports the hypothesis that the

game mechanic framework based on visual properties can increase student

confidence in building game prototypes when compared to text-based

programming.

5. Conclusions

Zetcil Game Mechanic Framework is the proposed solution to simplify the

game development process using the Unity Game Engine. Zetcil also can be used



Int. Journal of Applied IT Vol. 03 No. 02 (2019) 105

for rapid prototyping games for non-programmer users. At present, Zetcil has over

200 C# scripts and nearly 150 prefabs explicitly intended for game development.

The results of the experiments show there is a significant increase in Multimedia

Engineering Technology student's confidence level in creating a game. However,

further research is still needed to verify the ability of this framework to adopt new

types of game mechanics, linkages with third-party script compatibility, and code

stability in developing more complex games.

Bibliography

[1] Aleem, Saiqa & Capretz, Luiz & Ahmed, Faheem. "Game Development Software Engineering
Process Life Cycle: A Systematic Review." Journal of Software Engineering Research and
Development. 2016.

[2] Laamarti, Fedwa & Eid, Mohamad & El Saddik, Abdulmotaleb. "An Overview of Serious
Games." International Journal of Computer Games Technology. 10.1155/2014/358152. 2014.

[3] Sun, Hanqiu & Ricciardi, Francesco & De Paolis, Lucio Tommaso. "A Comprehensive Review
of Serious Games in Health Professions." International Journal of Computer Games
Technology. 2014

[4] Darwesh, Aso, "Concepts Of Serious Game In Education." International Journal Of
Engineering And Computer Science. 10.18535/Ijecs/v4i12.25, 2016

[5] A. Hendrick, "Project Management for Game Development" [Online]. Available:
http://mmotidbits.com/2009/06/15/project-management-for-game-development/. 2009.
[Accessed 18 March, 2020].

[6] H. M. Chandler, "Game Production Handbook" (Book style), Sudbury: Jones and Bartletts
Publishers, 2010.

[7] Ramadan, Rido & Widyani, Yani. "Game development Life Cycle Guidelines." 95-100.
10.1109/ICACSIS.2013.6761558. 2013

[8] Blitz Games Studios, "Project Lifecycle," [Online]. Available: http://www.blitzgames
studios.com/blitz_academy/game_dev/project_lifecycle. 2011. [Accessed 18 March, 2020].

[9] Boudreaux, Hollie & Etheridge, Jim & Kumar, Ashok. "Evolving Interdisciplinary
Collaborative Groups in a Game Development Course." [Online]. Available:
https://www.rit.edu/gccis/gameeducationjournal/evolving-interdisciplinary-collaborative-
groups-game-development-course, 2011. [Accessed 18 March, 2020].

[10] Nystrom, Bob. "Game Programming Pattern." [Online]. Available from https://game
programmingpatterns.com/design-patterns-revisited.html. 2014

[11] Ozkan, Eray, and Grove, Ralph. "The MVC Web Design Pattern." 7th International Conference
on Web Information Systems and Technologies. 2011

[12] Hunicke, Robin & Leblanc, Marc & Zubek, Robert. "MDA: A Formal Approach to Game
Design and Game Research." AAAI Workshop - Technical Report. 1. 2004.

[13] Schell. J. "The Art of Game Design". Morgan Kaufmann. 2008.

[14] Ralph, P. & Monu, K. "A Working Theory of Game Design. Mechanics, Technology,
Dynamics, Aesthetics & Narratives". [Online]. Available from: http://www.firstperson
scholar.com/a-working-theory-of-game-design. 2014/ [Accessed 20 March 2020].

[15] Walk, Wolfgang & Görlich, Daniel & Barrett, Mark. "Design, Dynamics, Experience (DDE):
An Advancement of the MDA Framework for Game Design." 10.1007/978-3-319-53088-8_3.
2017

[16] Roedavan, Rickman. "Unity Tutorial Game Engine Revisi Kedua". Bandung. Penerbit
Informatika. 2018.

[17] Roedavan, Rickman. "Construct2 Tutorial Game Engine". Bandung. Penerbit Informatika.
2017.

[18] Swanson, Richard A. "Theory Building in Applied Disciplines." San Francisco, CA: Berrett-
Koehler Publishers, 2013.

[19] Frost, Brad. "Atomic Design Methodology". [Online]. Available from: https://atomicdesign.
bradfrost.com/chapter-2/ 2016 [Accessed 20 March 2020].

[20] Statista, "Genre breakdown in the United States" [Online]. Available from:
https://www.statista.com/statistics/189592/breakdown-of-us-video-game-sales-2009-by-
genre/ 2018 [Accessed 20 March 2020].


