
Int. Journal of Applied IT Vol. 04 No. 02 (2020)

International Journal
of Applied Information Technology

http://journals.telkomuniversity.ac.id/ijait/

DevOps Approach Embraces Forward and Reverse Engineering

Acep Taryana a, *, Ari Fadli b, Eko Murdyantoro c, Siti Rahmah Nurshiami d

a,b,c Department of Electrical Engineering, Universitas Jenderal Soedirman, Indonesia
d Department of Mathematics, Universitas Jenderal Soedirman, Indonesia

acep@unsoed.ac.id, arifadli@unsoed.ac.id, eko.atmojo@unsoed.ac.id, siti.nurshiami@unsoed.ac.id

A R T I C L E I N F O A B S T R A C T

Received June 5th, 2020
Revised September 21st, 2020
Accepted September 22nd, 2020
Available online May 24th, 2021

Keywords
Automated Tools, DevOps, Object-
oriented Development, ORM,
Software Engineering.

Modern software development methods such as Agile have given customers a flexibility to

provide new requirement input when development is on progress, but customers cannot

access released products during development. Nowadays, DevOps is a new method of

software development that is the solution to these problems. In general, the DevOps Method

does not emphasize complete system requirements at the beginning of development. Instead,

the formulated requirements are immediately drafted in the model, implemented, and

deployed, so the customer quickly obtains an overview of the product. This paper aims to

discuss forward and reverse engineering software development in DevOps infrastructure.

This paper is limited to the discussion side of software development engineering, it does not

discuss the side of daily operations such as the discussion of web servers and other subsequent

processes. Through a case of developing an internal quality assurance system at UNSOED, it

was shown that forward and reverse engineering did not affect the stability of software

development and operation using the DevOps method. The results of the study show that

forward and reverse engineering are parts of development phase, be done because of the

existence of new requirements from customers or improvement from developer itself, be done

concurrently with the operation phase.

We would like to thank the DevOps partners in Universitas Jenderal Soedirman, especially the LPTSI and LP3M institution, so the DevOps

research could be conducted.

* Corresponding author at:
Department of Electrical Engineering, Universitas Jenderal Soedirman, Indonesia
Jl. Mayjen Sungkono KM. 5 Blater, Kabupaten Purbalingga, Jawa Tengah 53371 Ph. +62 (0281) 6596700 Fax. +62 (0281) 6596801
Indonesia
E-mail address: acep@unsoed.ac.id

ORCID ID:
First Author: 0000-0001-9302-3540

https://doi.org/10.25124/ijait.v4i02.2865
Paper_reg_number IJAIT000040211 2020 © The Authors. Published by School of Applied Science, Telkom University.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/

104 Int. Journal of Applied IT Vol 04 No. 02 (2020)

1. Introduction

Nowadays, the issue of DevOps is fascinating to study because it is not just

methodologies. However, it is philosophically equipped with tools to run

automation, collaboration, continuous integration, continuous delivery played by

business teams, software development teams, and operations teams in

organizational structures that are more complex and difficult to navigate [1].

DevOps has become a solution for both organizations that act as developers and

operations that have the nature or character of work that is contradictory to the

development and operation of the system. The development team tends to have a

dynamic character in system development. In contrast, the operating team is more

likely to maintain the infrastructure's stability so that the application runs. DevOps'

use will increase the effectiveness of work culture from the development and

operation of the system [2], which will improve collaboration between the

development and operations team. Although natural conflicts occur between the

two different organizations, they must be in harmony with each other to carry out

the development and operation cycle [3]. Another issue, DevOps can identify and

reduce the gap between the Development and the Operations team. Professional

software developers often tend to develop views where product changes are what

they are mandated to accomplish [4] [5].

Research on software development phases has been prevalent, but research

related to its effect on the DevOps approach is still rare, few, even less. This

research is fundamental because the DevOps approach can demonstrate software

development outcomes according to customer needs through a monitor/terminal

within a selected development infrastructure [6]. It is easy; customers can access

or use the software whenever there is a need change, including minor changes such

as display details. The DevOps approach can also collaborate with developers to

produce software releases that will be deployed in operation environments

accessible to customers.

This study aims to investigate the stages and details of applying the DevOps

methodology in software development. We know that software development

techniques can be through forward or reverse engineering. Something is interesting

that should be observed. Could the two techniques be implemented in the DevOps

methodology? How does both of technique be described in the DevOps? Then,

what effect of shifting the selection of development paradigms from objects to non-

objects when running both of these techniques in the implementation of DevOps.

2. Methods

It needs to be briefly discussed that object-oriented methodologies are chosen

in this research. Object-oriented methods codify software engineering principles in

terms of objects and class abstractions and determine processes, including

concepts, mechanisms, and notations, to support them. Objects in this methodology

can be compared with components in hardware design [7]. However, based on

researchers' observations, the availability of developers who can implement the

thinking of analysis and object design into object-oriented programming, even to

the implementation of object-oriented databases, is still limited. Therefore the

researcher designed this research using two approaches, an object-oriented

approach for analysis and design phase, then switch to a mixed approach when

designing a database. The changes in the use of the paradigm shift were observed,

how much influence on the DevOps.

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 105

2.1. Best Practices of the Forward and Reverse Engineering

Forward Engineering starts from the work of analysis, design, and coding.

While Reverse Engineering is a development work originating from the source

code, then design, and analysis [8]. As a simple example, when this initial study

was made in 2017, researchers compiled software through forwarding Engineering.

Furthermore, this research was carried out by integrating forward and reverse

engineering [6]. Reverse engineering occurs because of the addition or change of

the source code without going through the analysis and design phases. Reverse

engineering activity is identical to knowing the old source code without having the

complete design documentation [9]. Reverse Engineering has been needed to

measure existing systems and reconstruct the model according to the original [10]

Forward and reverse engineering activities are also identical with trial and error

development activities. Although trial and error, it has an impact on the speed of

software development. Because each phase of work can be re-evaluated through

reverse engineering after getting additional or modification, work results at a

particular phase can be traced, remodeled into the work in the previous phase. It is

almost certain that there is no trial and error in the waterfall methodology because

the waterfall is oriented towards finishing products with complete input

requirements [11]. Whereas in agile methodology, trial and error is an activity that

accompanies throughout the development cycle, coincides with the existence of

reverse engineering techniques in software development to obtain products that

meet user needs [11]. The agile approach explains that programming activities

begin when the design has not been completed, even testing the program can be

started since the analysis activity is still not finished. This shows that the

development phase activities have no strict limits so that it is possible to carry out

trial and error.

2.2. How does the Forward and Reverse Engineering Work in the DevOps

Approach?

Currently, DevOps loads explicitly about the phases of planning, coding,

debugging, testing, deployment, operating, monitoring [12]. However, the phases

of analysis and modeling have not been accommodated. This may be the case

because the analysis and design phases have not been entirely quantifiable.

Someday, DevOps allows writing by including phases of analysis and model

design, including considering computational model accuracy.

DevOps' role in software engineering is to connect all development disciplines

at various phases into the technological infrastructure of software product

development and operation [12]. Through DevOps, the gap between thinking and

implementation is reduced, and the gap between customer and developer is

reduced. This means that what the developer thinks will be quickly implemented.

The customer can access the results of his thoughts. Moreover, what the customer

wants is quickly realized and quickly known, re-evaluated by the customer.

Table 1 shows that the DevOps approach is closer to the agile approach. Some

researchers categorize that DevOps is an approach to implementing the Agile

methodology [13]. The DevOps is an extension of agile with the addition of product

automation to improve collaboration between development and operation teams

[14]. Because the agile approach's nature is to serve fast customer demands, rapid

software development is needed not only forward engineering but also reverse

engineering.

Forward engineering activities discuss how thought is expressed in a design

model that can be arranged in a skeleton code. In contrast, reverse engineering

106 Int. Journal of Applied IT Vol 04 No. 02 (2020)

discusses how source code can be modeled in model design. Then what if using the

DevOps methodology, does it accommodate forward and reverse engineering?

Note that DevOps based on Table 1 is an extension of agile methodology. The

difference is, Agile only covers the discussion of "Development" while DevOps,

not only "Development" but also discusses "Operation." Based on the explanation

of the DevOps cycle, the Development stage is equal to half the work of all DevOps

work, and so is the operation phase [15][4]. The accumulation of all Development

and Operation jobs will form a single DevOps cycle.

Table 1 The Software Development Approach Describes the Product Issue, Cycles, and Automation

Approach
Properties

Product Issue Cycles Automation

Waterfall Finish product
Complete requirements are clear
and fixed

Product might only be working on a
developer’s computer/in a test environment

Agile
Iterative and
incremental

 Requirements change frequently
 Development needs to be agile

Product might only be working on a
developer’s computer/ in a test environment

DevOps
Iterative and
incremental

 Requirements change frequently
 Development needs to be agile
 Operation needs to be agile

Automatically the product not only be
working on developer’s computer but it is
properly working upon operation
infrastructure inside the customer
environment

3. Results

Based on the software development cycle, the DevOps approach starts working

gradually from coding to implementation. The automation of phases is done by

several tools used to support the implementation of DevOps. The tools are grouped

into two parts. The first is a tool whose role is to organize, collaborate in making

source code. The second is a tool whose role is to install configurations, deploy

applications on the server automatically. The second tool can access the source

code managed by the first tool. Updating the source code every time will trigger a

second tool to perform configuration updates applications and implement

applications. The explanation of both is discussed below.

3.1. From the Object-oriented Technology into a Relational Database

Before the DevOps approach was implemented, programmers are assigned to

design ER databases as initial deliverables, which were solutions to a business

information system process's problems. Of course, the working model is very

magical. Programmers directly translate the requirements into database designs. If

a development model like that continues to be maintained, it affects development

productivity measurement. The DevOps approach provides automation throughout

the software development phase, not only in the programming phase but also in the

analysis and design, testing, and deployment phases.

In this study, object-oriented technology (OO) is chosen at the analysis, design,

and coding level. However, the use of technology is shifted during database

implementation, using the concept of database relational. This adapts to the field

conditions for the availability of programmers and tools. The development tools

used are Visual Paradigm version 14.2 (VP). The VP uses UML notation in which

this research uses Use Case diagrams, Class Diagrams, Sequence diagrams. The

programming tool used is Eclipse with the programming language chosen is the

Play Framework version 1.5. From object-oriented to non-object, the development

paradigm shift is not a problem because it is supported by the existence of a

connecting layer between persistence objects and relational databases called Object

Relational Mapping (ORM). The ORM is the main need to build software with an

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 107

object-oriented approach, while the database used is already a relational database.

With the ORM, programmers work using object concepts, and then tools will

translate automatically into the concept of relational information in the database.

The relational object mapping (ORM) framework overcomes the problem of the

impedance level of software implementation.

Table 2 Relation between OO Paradigm and Relational Database through all Phases of
DevOps Approach

Phases Paradigm Database Implementation

Analysis OO -

Design OO -

Programming OO OO or Relational

Testing OO -

Table 2 shows that there are options for implementing databases, namely using

object databases or relational databases on development models using an object-

oriented paradigm.

3.2. Case Study for One Software Development Cycle

This section shows software development through the phases of analysis and

design, implementation, deployment, which is built through DevOps infrastructure.

Figure 1 A Use Case of Internal Quality Assurance System

SPMI-PT application is one project which is used as a case for developing the

University's internal quality assurance system at Universitas Jenderal Soedirman

(UNSOED). The next section explains the phases of developing the SPMI-PT

application using DevOps technique and tool. First, Figure-1 describes the scope

of an internal quality assurance system for UNSOED. The figure is a model

element from UML notation known as Use Case Diagram. The actors involved in

quality assurance include department quality assurance, faculty quality assurance,

university quality assurance, faculty auditors, university auditors, head of study

programs, head of the department, dean, and Quality Assurance Agency, namely

108 Int. Journal of Applied IT Vol 04 No. 02 (2020)

LP3M. Based on the picture, all actors have the right to access

(create/read/update/delete) information through the corresponding use case. For the

first example, an actor of department quality assurance, faculty quality assurance,

and university quality assurance could define some standards. The defined standard

is the targeted quality to be achieved on a measurement. The second example,

actors of faculty auditor, university auditor, could conduct to evaluate

implementation. The evaluation phase can be executed after the standard definition,

and implementation phase has been completed. The last example is actors of dean,

head of the study program, LP3M, head of the department could access the

controlling audit results use a case in which the actor can then access the tune

quality use case. As the last phase of the implementation of quality assurance in

each cycle, controlling and tune use case is a use case that is very important to be

able to improve the quality that has been targeted, whether the quality is achieved

or not. The results of the quality control can be upgraded or adjusted to the real

conditions in the field.

The picture shows one relationship, including between "define a standard" and

"standard implementation" use case; another include relationship is between

"controlling audits" and "tune quality" use case. The relationship gives the meaning

that the use case is a continuation of the related use case. Second, this step is to

create a class diagram representing an information structure of the SPMI-PT that is

built. The class diagram is a diagram as a form of the first release of the SPMI-PT

application, where there are still many structural limitations. The most important is

the first release application that can describe users' needs of the quality assurance

system. The class diagram illustrates the presence of standards structure consists of

a quality assurance unit structure, quality assurance structure, and quality indicator

structure. The class diagram in Figure 2 describes the relationships between classes,

such as the standard relation between unit, the relation between the responsible

person, and the standard.

Figure 2 Class Diagram of Internal Quality Assurance System at Universitas Jenderal
Soedirman [6]

Figure 1 and Figure 2 are products from the analysis and design phases,

respectively. To make these products, we use the VP. This phase in the DevOps

approach is not explicitly stated. However, based on literature [15], it is part of the

"Plan" of the DevOps approach. More detail Plan phase includes capture

requirements, create plans and tasks, analysis, scoping.

Third, it is an implementation phase in the DevOps known as the "Coding"

phase. To realize the coding phase, we first generated the class diagram in Figure

2 using the VP tool. The result is a skeleton code that must be detailed into the full

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 109

source code. The skeleton code generated is standar.java, unitjamu.java,

person.java, penanggungjawabstd.java, pihakpj.java, indikatorstd.java,

indikator.java. Source Code 1 is an example of a source code snapshot that has

been created using an Eclipse editor implemented in Play Framework 1.5 (PF15).

Source Code 1 Realization of the Standard Class (standar.java)

The focus of this phase is how to complete the skeleton code into a complete

code that minimalist. The minimalist limits indicate that source code is considered

sufficient if it does not show syntax errors when compiled. A question arises, does

all the generated skeleton code have to be complete? The answer adjusts the

minimum threshold conditions. It should be borne in mind that we demonstrate the

superiority of a DevOps approach where software development starts when some

small ideas directly implement and are executed by computers so that the

application functions appear to run in a DevOps environment.

The development of an application using PF15 requires a model-view-

controller (MVC) as an architectural pattern. By default, if creating a project using

PF15, the MVC folder will be created. We have only a minimalist Model (M) that

contains a complete skeleton code until this phase. The next target is that the

application must be equipped with a database that contains the entity of the system

being built. In this case, the database structure can be generated from the model

compiled in the PF15 automatically. The result of the compilation is shown in

Figure 3. This is one of the advantages of enterprise application development using

an object-oriented approach with the help of PF15. The impact, a developer, is not

busy with database design work.

Figure 3 Fields of Standard Table or Entity

110 Int. Journal of Applied IT Vol 04 No. 02 (2020)

According to the DevOps approach, the step to compile and create a source code

that can be executed is a Build phase. To support the work of the Build phase, it

takes two tools. The first is a tool for collaborating and integrating code. The

second is a tool for compiling and deploying to be an executable program in the

prepared environment. Through using GitHub and Jenkins tools, a developer could

carry out coding and simultaneously to collaborate management and deploy

applications automatically. In the example above, the developer has created the

source code using the PF15, using GitHub to implement collaboration

management, and using Jenkins to conduct continuous integration [6]. We could

show the work process in recording every condition of change in collaborative

management tools such as GitHub and Jenkins as in the following Figure 4 and

Figure 5, respectively.

Figure 4 Management Collaboration Using GitHub at SPMI-PT Application

The information in Figure 5 shows that the SPMI-PT application could already

be run on the target server. The application users can already access it through

interfaces that have been deployed into one server, such as the view in Figure 6. At

the same time, they could evaluate if there is an incompatibility with the requested

requirements.

Figure 5 Continuous Integration Using Jenkins for SPMI-PT Application

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 111

Figure 6 Default CRUD for SPMI-PT Application

Source Code 1, Figure 1 Figure 2 Figure 3 Figure 4, Figure 5, Figure 6 are

products generated from the Forward Engineering phase if it is done sequentially.

What about the Reverse Engineering phases that developers cannot avoid when it

comes to a new requirement into the system being developed? As an appropriate

solution, the VP can directly facilitate reverse engineering from source code change

into the design phase. This section describes the change in a code that can affect

the structure of the database, and of course, the deliverables at the design phase

must be changed. For example, a developer creates a Source Code 2 without a

thorough analysis and design phase.

Figure 7 DevOps Cycle and Related Tools

In agile methodology, it is permissible and legitimate. And then, how with

DevOps approach? Section 2 discussed that forward and reverse engineering is an

activity half part of the DevOps cycle. Half of the DevOps cycle on the

development side is identical to agile methodology. Therefore, DevOps can do that

as well in agile. The DevOps cycle and accompanying tools can be seen in Figure

7.

112 Int. Journal of Applied IT Vol 04 No. 02 (2020)

Figure 8 shows the direction of software development in DevOps can be

through forwarding Engineering or Reverse Engineering. If the Forward

Engineering direction is taken, the Plan, Code, Build, Testing, and Monitor

columns must be done in sequence. However, if the Reverse Engineering direction

is taken, the reverse direction from forwarding Engineering is taken, analysis and

design are done after working on the source code. For example, in the direction of

forwarding Engineering, the first step composes the analysis, the second step

arranges the design. The analysis results are shown in Figure-1, and the design

results are shown in Figure 2. Steps 1 and 2 are part of the Plan in DevOps. The

next step is the 3rd step to make the source code based on the 2nd step results. Still,

in the 3rd step, the source code is set in the GitHub. The 3rd step is part of the Code

in DevOps. In the 4th step, successively set the source code, carried out the build

using Jenkins, and executed the generated database when the application was

successfully executed. Still, in that stage, the application is deployed on the

destination server. The 4th step has been carried out sequentially by the Build and

Deploy phase. In the last step in forwarding Engineering, the customer can see the

software product developed through the specified server interface. Steps 1, 2, 3,

and 4 above are defined as the first iterations in half of the DevOps cycle.

Meanwhile, reverse engineering is described as follows. When the source code

has been changed, the designer can reverse engineering it into design and analysis.

Changing the source code is done in the 3rd step, while generate design is carried

out in the 2nd step in the Plan phase. When reverse engineering is done, it is

possible that the product has been released and delivered to the customer. Reverse

engineering is done because there is a source code repaired by the programmer that

needs to be adjusted for a new design or a new requirement of the customer that is

done on the next iteration of the DevOps cycle.

Figure 8.DevOps Cycle in other Form

Reverse engineering can be done during software development running before

the product is released, delivered to the customer, or done when the product has

been delivered. The customer has used it through new requirements. Figure 9

shows the behavior of reverse engineering work on the development side. The

figure also shows that reverse engineering work can be done simultaneously with

the operations section.

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 113

Figure 9 DevOps State Machine

Similarly, with the steps in the Forward Engineering approach, Source Code 2

is compiled and then pushed to GitHub if it is free of errors. Jenkins will

automatically execute the build command and deploy it to the target server. After

the Jenkins implements build and deploy, the application and database are

automatically formed immediately. This step is the last in one cycle before the

customer can see changes in the deployment environment.

Source Code 2 New Class which represent Department Entity (department.java)

The next step that must be done when implementing reverse engineering is

generating Class diagrams from the source code. This step includes part of the

automation in the DevOps approach. This is an important step in reviewing the

product through class design that represents the source code's skeleton. The

structure can be used by designers to evaluate suitability. Figure 10 is a reverse

result of the source code being a class diagram.

Finally, in reverse engineering, we must add, update, delete some models in the

use case according to the newly formed class diagram. The class diagrams are

created automatically using VP, while the use case diagrams are arranged by adding

additional parts manually.

114 Int. Journal of Applied IT Vol 04 No. 02 (2020)

Figure 10 New Class diagram Created After the Addition of A New Code in the Reverse

Engineering Approach. (department.java into department class diagram).

3.3. Forward and Reverse Engineering on Extreme Programming (XP)

XP is one of several popular Agile processes, apart from Scrum, Crystal Clear,

Adaptive Software Development, Feature Driven Development, and Dynamics

Systems Development Method (DSDM). Because Agile is part of SDLC, XP also

has various work stages, which generally include Planning, Design, Coding,

Testing.

It is essential, XP is applied to work projects where the initial definition is not

clear; the customer does not have a clear initial picture of the output [16].

Therefore, it is very appropriate that software development work is carried out in a

forward and reverse direction that is fast, user-oriented, and anticipates, rapidly

changing user needs. Forward and reverse engineering is carried out so that users

can see the desired product quickly. Even when there are mismatches, the user can

provide new input to the developer quickly.

XP was a fast method widely used in software development at its time. The

characteristic of XP that most influences the quality and speed of software

deployment is pair programming. With pair programming, programmers work on

one computer to complete the program. What if the programmer is more than two

people and scattered everywhere? XP cannot address these issues.

Based on this discussion, it can be said that XP is a complementary part of the

DevOps method. Both are agile software development approaches or methods.

Nevertheless, based on the previous sub-section explanation, DevOps is not just a

method or approach. It also discusses tools and infrastructure as a place or tool to

run software development. More importantly, the scope of it discusses the

automation of the development stage and the operation stage. It is a solution to

reducing the gap between developers and operators, where the development team

tends to radical changes while the operating team tends to be stable. Furthermore,

it discusses developer collaborations of more than two people in various places

simultaneously working together [6].

4. Conclusions

We have demonstrated a series of software application development using the

DevOps approach. The development model was chosen in two ways, namely

forward and reverse engineering. The result is that both forward and reverse

Int. Journal of Applied IT Vol. 04 No. 02 (2020) 115

engineering can be run at various DevOps cycle stages, including Plan, Code,

Build, Test, and Deploy. Automation of the implementation of forwarding and

reverse engineering has been recorded in half part of one DevOps cycle, namely in

the side, including Plan, Code, Build, Test, Deploy. Execution of forwarding and

reverse engineering activities in the DevOps approach shows that each job in a

stage can be traced. The traceability is a requirement so that continuous

development can simultaneously run from analysis to testing or vice versa.

Forward and reverse engineering is part of the Development (Dev) stage that is

done because of the improvement of the source code from the developer itself or

because of new customer requirements after the operation (Ops). After one DevOps

cycle is reached, development work can be done simultaneously with the operation,

known as concurrent tasks. Every time a new change is triggered by the developer

or from the customer, the next iteration of the DevOps cycle will be launched, and

a new release will be launched soon.

Our study results also show another aspect, namely the stability of the software

development process in the DevOps approach. Software development that begins

with an object-oriented approach must shift software development that begins with

an object-oriented approach that must shift into a non-object approach when it

implements a database. With current technological advancements, this paradigm

shift can be solved using a programming framework with the ORM concept. By

using the ORM concept, developers are not preoccupied with database design, but

more effort is devoted to compiling a class diagram model to solve the problem.

During execution, ORM is a layer that functions as a bridge between the model

class and database implementation.

It is quite interesting to do it in the future to quantify the quality of software

development built with the DevOps approach. As an opening discussion, this study

has revealed the aspects of Culture, Process, and Technology as some supporting

components of the development process. The description of the critical work stages

has been described in half of the cycle of the DevOps. Note that half of the DevOps

cycle is an agile methodology. This shows, in general, that developing software

using DevOps will be better than previous methodologies such as agile.

Bibliography

[1] J. M. Jez Humble, "Why Enterprises Must Adopt Devops to Enable Continuous
Delivery," Cut. IT J., vol. 24, no. 8, 2011.

[2] H. Niwa, "Towards the adoption of DevOps in software product organizations: A
maturity model approach," Development, vol. 134, no. 4, pp. 635–646, 2007, DOI:
10.16242/j.cnki.umst.2014.04.005.

[3] O. Reilly, "Michael Hüttermann," in Beginning DevOps for Developers, 2012, pp.
3–13.

[4] J. Wettinger, U. Breitenbücher, and F. Leymann, "DevOpSlang - Bridging the gap
between development and operations," Lect. Notes Comput. Sci. (including Subser.
Lect. Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 8745 LNCS, pp. 108–122,
2014, DOI: 10.1007/978-3-662-44879-3_8.

[5] B. S. Farroha and D. L. Farroha, "A Framework for Managing Mission Needs,
Compliance, and Trust in the DevOps Environment," in MILCOM '14 Proceedings
of the 2014 IEEE Military Communications Conference, 2014, pp. 288–293,
[Online]. Available: http://dx.doi.org/10.1109/MILCOM.2014.54.

[6] A. Taryana, I. Setiawan, A. Fadli, and E. Murdyantoro, "Pioneering the automation
of internal quality assurance system of higher education (IQAS-HE) using DevOps
approach," https://ieeexplore.ieee.org/document/8304146, 2018, DOI:
10.1109/SIET.2017.8304146.

[7] E. Colbert, "Choosing the Right Object-Oriented Method,"
https://www.researchgate.net/publication/228802941, no. 760, 1992.

[8] E. Chikofsky and J. Cross, "Reverse engineering and design recovery: A taxonomy,"
IEEE Softw., vol. 7, no. 1, pp. 13–17, 1990, [Online]. Available:

116 Int. Journal of Applied IT Vol 04 No. 02 (2020)

https://ieeexplore.ieee.org/document/43044.
[9] R. Singh, "A Review of Reverse Engineering Theories and Tools," Int. J. Eng. Sci.

Invent., vol. 2, no. 1, pp. 35–38, 2013, [Online]. Available:
http://www.ijesi.org/papers/Vol(2)1/G213538.pdf.

[10] C. Baidada, E. M. Bouziane, and A. Jakimi, "An Analysis and New Methodology
for Reverse Engineering of UML Behavioral," Int. J. Adv. Eng. Manag. Sci., vol. 2,
no. 7, pp. 1012–1016, 2016.

[11] Abhinav, M. Vijayalakshmi, A. Bhandiwad, K. Mellikeri, and P. Nagesh,
"Transition from Conventional to Agile Process Model an Experience Report," J.
Eng. Educ. Transform., vol. 0, no. 0, 2018, [Online]. Available:
http://www.journaleet.org/index.php/jeet/article/view/120893/82987.

[12] F. Erich, C. Amrit, and M. Daneva, "Report: DevOps Literature Review,"
https://www.researchgate.net/publication/267330992_Report_DevOps_Literature_R
eview, no. October, pp. 1–27, 2014, DOI: 10.1007/978-3-319-13835-0.

[13] A. Robert, T ; Masters, William ; Stark, "Teaching Agile Development with DevOps
in a Software Engineering and Database Technologies Practicum," in 3rd
International Conference on Higher Education Advances, 2017, pp. 1353–1362.

[14] P. Perera, R. Silva, and I. Perera, "Improve software quality through practicing
DevOps," https://ieeexplore.ieee.org/document/8257807, no. March, pp. 1–6, 2017,
DOI: 10.1109/ICTER.2017.8257807.

[15] S. Carrizo, S. Cucu, and S. Modir Using Liberty for DevOps, Continuous Delivery,
and Deployment. 2015.

[16] R. Fojtik, "Extreme programming in the development of specific software," Procedia
Comput. Sci., vol. 3, pp. 1464–1468, 2011, DOI: 10.1016/j.procs.2011.01.032.

