
Int. Journal of Applied IT Vol. 04 No. 01 (2020)

International Journal
of Applied Information Technology

http://journals.telkomuniversity.ac.id/ijait/

Survey Paper on User-Centric Service Composition

Henry Rossi Andrian a, Wardani Muhamad b

a Diploma of Computer Engineering, School of Applied Science, Telkom University, Indonesia
b Diploma of Information System, School of Applied Science, Telkom University, Indonesia

rossi@tass.telkomuniversity.ac.id, wardani.muhamad@tass.telkomuniversity.ac.id

A R T I C L E I N F O A B S T R A C T

Received September 1st, 2020
Revised November 5th, 2020
Accepted November 9th, 2020
Available online March 4th, 2021

Keywords
service composition, user-centered,
preferences

Service composition combines several services to complete more complex tasks and get

increased service value. The service user determines the task be completed. Several standards

have been presented to support the composition of services, including BPEL and WSCDL.

However, existing standards can only be used or operated by IT professionals who understand

software design and development well. The number of end-users who do not have specific

skills is far greater than that of IT professionals. Therefore, to improve service composition

capabilities, end-users must be given the opportunity to interact directly with the service

composition system to obtain the new services they need. To create a user-centered service

composition, some general needs must be met, namely: making it easier for users to obtain

appropriate services, guaranteeing the fulfillment of Quality of Service (QoS), and visualizing

composite services that are generated instantly. The resulting services meet external

requirements submitted directly by users and pay attention to user preferences as internal

(implicit) requirements. This paper presents various studies that have been produced to

support the composition of user-centered services and problems that are still open as to

research challenges in the future. This study's results are exspected to help service

composition platform developers understand the various approaches to developing user-

centered service composition.

* Corresponding author at:
School of Applied Science, Telkom University,
Jl. Telekomunikasi No. 1, Terusan Buah Batu, Bandung, 40257
Indonesia.
E-mail address: wardani.muhamad@tass.telkomuniversity.ac.id

ORCID ID:
 First Author: 0000-0002-5328-4540
 Second Author: 0000-0002-6420-1683

https://doi.org/10.25124/ijait.v4i01.3213
Paper_reg_number IJAIT000040105 2020 © The Authors. Published by School of Applied Science, Telkom University.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)



Int. Journal of Applied IT Vol. 04 No. 01 (2020) 39

1. Introduction

The term service has been known for decades and is influenced by the global

industrial economy's development. Along with the development of technology,

especially information and communication technology (ICT), the term service is

no longer used only in management disciplines but is used in engineering and

computer disciplines. In Service-Oriented Architecture (SOA), services are

software components distributed over computer networks and can be found by

consumers. SOA provides a logical way of designing software systems to produce

distributed services in a network and can be found [1, 2]. Capabilities are translated

into service interfaces that end-users or other services can bind and run. Service

can complete a specific task. As user requirements' complexity increases, the use

of a single service may not be sufficient to complete complex tasks. Therefore, it

is necessary to combine several services through the service composition process.

Service composition involves combining and coordinating a series of services to

achieve functionality that cannot be realized through existing services [3] and

create new services that can increase the value [4].

In general, service composition involves several activities carried out

sequentially, including defining user requirements, searching services, selecting

services, and arranging selected services. Due to the complexity of producing new

services, IT professionals generally run the composition of services who have

expertise in software design and development. Meanwhile, end-users who have

requirements that must be met cannot be directly involved in the service

preparation process. As a result, composite services' compatibility will be reduced

if it does not directly involve the end-user [5]. Services computing, web services,

and developments in web technology, especially with the advent of web 2.0, have

created potential opportunities for end-users to build their applications [6]. There

are general needs that must be met to facilitate end-users to be directly involved in

the composition of services, including [5]:

1. making it easier for users to find suitable services without having to use

burdensome time and energy;

2. must be able to guarantee an efficient Quality of Service (QoS); and

3. able to provide instant visualization of the combined service.

Knowing the various approaches, technologies, and service composition

mechanisms is the basic knowledge that must be mastered by service composition

platform developers. More specifically, if those who will use the platform are end-

users who do not have enough information technology expertise, an understanding

of the approach and technology must be sufficient. Various solutions have been

produced by researchers and published in scientific articles. The provision of

survey papers will help other researchers to gain concise and comprehensive

knowledge. One survey paper related to user-centered service composition was

proposed by [7] in investigating related technologies and methods on service

composition and their impact on user-centered service development. This paper

contributes to determining the essential requirements when designing a service

composition environment and comparing each requirement in a service

composition mechanism. However, this paper does not explain the service

composition visualization approach that simplifies end-users' service composition

process. This paper aims to present the approaches to developing user-centered

service composition research and research opportunities that could be developed in

the future.



40 Int. Journal of Applied IT Vol. 04 No. 01 (2020)

The paper organization is explained as follows. An overview of the basic

concepts is provided in section 2 to provide an overview of the service composition

process. Furthermore, section 3 conveyed the development of research on the

composition of user-centered services. Section 4 describes several research

opportunities that could be developed in the future. The last section concludes the

result and future works of this study.

2. Literature Review

2.1. Web Services

Web services are the main technology to support SOA [3] and a tangible

manifestation of the service computing concept [8]. World Wide Consortium

(W3C) [9] defines web services as software systems designed to support machine-

to-machine interactions over a network. The defining characteristic of web services

is the use of the internet and the world wide web (Web) as a communication

medium for services to interact with each other and with service consumers. By

using the Web, Web services make use of the Uniform Resource Identifier (URI)

infrastructure so that anyone who has access to the Web can find it. The URI

schema assigns a name to each web service that uniquely identifies and allows a

person to use all URI operations to access it.

Compared to other software entities, web services have the following features

[8]:

• Descriptive: The service description language can describe web services.

• Released: Web services can be registered in the registry and released.

• Discoverability: Users can send search requests to the registry to find

services and access information.

• Bind-able: Web service description information can be tied to another

service that is running.

• Invoke-able: Web service can be called by remote code with description

information.

• Compos-able: Web services can be combined with services to create larger

(complex) services.

Up to now, SOAP and RESTful are two styles of web services commonly used.

RESTful is increasingly being used to create web services because it is simpler than

using SOAP. RESTful web services used Hypertext Transfer Protocol (HTTP) as

a uniform interface to access the resources. GET, PUT, DELETE, and POST

become operations used to manipulate the resources in the Web context. Message

exchanging via responses based on client requests express the service capabilities

in processing the message. The heavyweight protocol implemented by SOAP-

based web services is a drawback that solved by RESTful web services. Its offers

lightweight and stateless services that are particularly suitable for ad hoc

integration over the Web.

2.2. Web Services Description

Service descriptions are useful for defining service interfaces that expose the

operations provided by the service and binding mechanisms to each operation.

Currently, there are several standards used as a language to describe web services,

namely: Web Services Description Language (WSDL)1, Web Application

1 https://www.w3.org/TR/2007/REC-wsdl20-20070626/



Int. Journal of Applied IT Vol. 04 No. 01 (2020) 41

Description Language (WADL), Semantic Annotation for WSDL and XML

Schema (SAWSDL), Universal Service-Semantics Description Language (USDL),

OWL-S, and Web Service Modeling Ontology (WSMO).

WSDL is an XML-based language used to create web service interface

specifications. The WSDL document describes web services' functionality, how to

interact with web services (concrete level), and the input and output messages

provided by web services (abstract level). A web service's capabilities are described

through a set of operations that describe the message exchange pattern as input and

output parameters. WADL is designed to provide a process-engine description of

an HTTP based web application. WSDL and WADL provide descriptive service

descriptions, which has the main drawback of ambiguity.

This drawback could be overcome if the service could provide more detailed

semantic descriptions. Adopting the semantic concept as a description of web

services can improve web services' capabilities so that search, discovery, selection,

composition, and integration are better. The semantic-based service description

approach can be divided into 2 (two) groups, namely: annotation-based approach

and semantic language-based approach. The annotation-based approach aims to

enrich and complete service descriptions by establishing a correspondence between

description elements and concepts from a set of referenced ontologies. The

descriptive languages included in this group are SAWSDL and USDL.

Meanwhile, the semantic language-based approach has a major advantage in

describing web services that can be interpreted clearly (unambiguously) by the

program (machine). OWL-S and WSMO are the service description languages that

can be selected in the semantic language approach group. SAWSDL defines how

to add semantic annotations to various parts of a WSDL document, such as input

and output message structure, interfaces, and operations. SAWSDL provides a

mechanism by which concepts from a semantic model can be referenced using

annotations. USDL [10] is a language that provides the formal semantics of web

services enabling sophisticated conceptual modeling and automation in the search

for available services, automated composition, and service integration. USDL uses

an ontology-based on OWL WordNet for basic ontology concepts that can be easily

searched and combined for easy setup flexibility. USDL is a language that can

discuss all types of services by covering 3 (three) aspects: technical, operational,

and business. OWL-S is an OWL-based web service ontology that facilitates

service providers to describe web services' properties and capabilities in a clear

(unambiguous) manner and can be interpreted by computers. OWL-S mark-up on

web services facilitates automation of web service tasks, including automatic

discovery, execution, composition, and interoperation of services. WSMO is a Web

Service Modeling Framework (WSMF) based ontology that describes different

aspects of dynamic web service composition, including dynamic search, selection,

mediation, and use. WSMO provides 4 (four) components that differentiate web

service semantics: ontologies, goals, services, and mediators.

2.3. Web Services Composition

The capability of a web service generally describes a business function of a

business process. In some cases, the service capability must be fulfilled by

combining (composition) several web services. Web services that involve several

other web services are called composite services while combining several web

services is called web service composition. Web services' composition involves

combining and coordinating a series of services to achieve functionality that cannot

be realized through existing services [3]. The composition is oriented to creating

new services that can add value to improve the interface of existing services to be



42 Int. Journal of Applied IT Vol. 04 No. 01 (2020)

better [4]. Service compositions allow service system developers to arrange a

collection of existing services and define their interfaces as aggregate solutions.

The general form of service composition is orchestration and choreography, as

shown in Figure 1. Service orchestration places a central coordinator (known as an

orchestrator) who can invoke and combine single sub-activities. In contrast, service

choreography defines complex tasks by defining interactions or communications

that must be done by each service without adding a central coordinator. Each party

or business process endpoint must define the public exchange message, the rules

of interaction, and the agreement to support the choreography.

Figure 1 Service Composition Form [11]

Service composition has the following characteristics [12]:

• Web services are not like application libraries, which must be compiled and

linked as part of the application.

• Basic components (individual services) remain separate (independent)

from composite services.

• The web service composition mainly determines which services need to be

called, the order of calls, and how to handle exceptions, etc. This can be

viewed as a Web service-based workflow.

• The composition of the Web Service is nested. Service composition

involves single/atomic services and involves other composite services as

the basic components to be combined.

A framework can be used as a reference for activities that must be carried out

sequentially (sequentially) to support the entire process in web services

composition. Figure 2 presents a general web service composition framework.



Int. Journal of Applied IT Vol. 04 No. 01 (2020) 43

Figure 2 Service Composition General Framework [13]

Following Figure 4, the main actors in the service composition system are the

service providers and service users. The service provider creates a variety of

services and is then registered in the service repository. Users from the service

repositories can find the essential services. Service users can use all the information

they need according to the service description that has been made by the service

provider. The framework is equipped with 4 (four) other components to support the

process of creating a composite service according to the specifications or needs of

service users and the service repository, namely: translators, process generators,

evaluators, and execution engines. The translator is tasked with translating between

the external language (specifications or requirements) proposed by service users

(generally by specifying input and output pairs) and the process generator's internal

language. The process generator then creates a composition plan that lists the

operations to be fulfilled and compares them with the repository services. If more

than one plan is found, the evaluator evaluates all plans and proposes the best

outcome for the composite service construction. The execution engine executes the

plan and returns the composite service to the service user.

3. User-Centric Web Service Composition

Currently, many solutions have been presented to support user-centered service

compositions., Various methods are implemented to facilitate service discovery,

such as service pool [12], service community [10], and skyline [14], all of which

have the main objective of being able to deliver services according to end-user

needs efficiently. The static composition of services is supported by the presence

of the What You See is What You Get (WYSIWYG) editor, which provides the

ability to visualize a web application presented as a solution by [5] [15] in addition

to the creation of a guided service (wizard) as produced by [16]. Meanwhile, to

support the dynamic composition of services, the provision of high-level graphic

languages such as VINCA [17] and Flow Editor [18] have also been produced. The

requirements that must be met in the composition of user-based services are limited

to external requirements conveyed directly by the user and consider user

preferences as internal (implicit) requirements. The best composition results

present a suitable choice of available Web services considering global and local

constraints related to QoS and user preferences [19]. Service composition that

involves end-users directly has at least some general requirements [5]:

1. the similarity in functionality offered by several service providers causes

the possibility of finding several service candidates to be composed. This

causes the service selection process to spend time and effort for end-users;

2. must be able to provide a QoS guarantee so that QoS negotiations can be

carried out efficiently, and



44 Int. Journal of Applied IT Vol. 04 No. 01 (2020)

3. the service composition application must make it easier for end-users and

be able to provide instant visualization.

Providing easy web service search facilities according to user needs is the first

challenge that must be resolved by finding suitable services resulted from many

web services with similar functionality and provided by different service providers.

It will take a long time and a great deal of effort for the end-user who does not have

specialized skills to find the services he will incorporate. Previous researchers have

developed tools or methods to solve this problem. It takes for end-users to search

for services with similar functionality from different service providers to avoid a

large amount of time. A second requirement that must be met is the compilation of

composite services that are easy to use or operate by end-users who do not have

special expertise in service composition. Composite service arrangements in the

service composition process can be made statically or dynamically. Static service

composition is very dependent on user skills, especially information technology

skills. Users are required to have skills in designing composite services, including

selecting primitive services, compiling composition logic, and defining flow and

control between each service. Procedure-generated composite services will follow

the design and configuration according to the design results. On the other hand, the

dynamic service composition will produce a composite service according to user

requests in both visual form and natural language.

The static service composition provides tools such as a form or wizard and a

WYSIWYG editor. Forms or wizards are used to help users define composite

services by providing key information such as the location of each primitive

service, the call order for each service, and the output format of the service

composition process and execution results to the system. In Easy SOA [20], users

can easily build applications because the installation of output and input between

services can be done easily using a web browser. Users can export applications like

web applications or web services without having to run deployment operations.

Chafle et al. [16] observed the absence of an Integrated Development Environment

(IDE) to facilitate the composition process, reducing development time and

integration efforts. The IDE built is equipped with 2 (two) wizards, namely: Synthy

Project Builder Wizard and WSC Wizard. The Synthy Project Builder Wizard is

used to start the project and provide direction to the user in determining the location

of required resources such as ontology concepts, service ontology types, registry

examples, and resource files containing ontology processing rules. While the WSC

Wizard is used to capture the information needed for setting up a new service

composition. The WYSISYG editor produced [5, 6] supports the visualization of

service composition, making it easier for users to design a web service layout to be

composed by selecting services (in the form of interface components) and

presenting an overview of the use of selected services on the client-side. Apart from

that, end users can also modify the generated composite service instantly. Xiang

and Madey [15] provide a task editor in an HTML template or a graphical

composition tool for running composition services. A framework is also provided

to facilitate portal developers to integrate new services into their portals for public

use.

Dynamic service composition attempts to eliminate or reduce user contributions

in manually writing service composition document semantics. One way to solve

this problem is to provide a service composition using a high-level graphic

language that makes it easy for users to determine the desired composite service.

VINCA [17] developed a high-level graphic editor that allows end-users to define

services at the business level. The graphical editor provided by Flow Editor [18]



Int. Journal of Applied IT Vol. 04 No. 01 (2020) 45

helps users describe the ideal composite service in the form of flowcharts.

Meanwhile, Saifipoor et al. [21] adopted the Reo coordination language to produce

a service composition platform. The visual approach is also applied in the system's

visualizer component built by Rao et al. [22], which is used to represent the

composition logic determined by the user in a graphical form. Fujii and Suda [23]

taken a relatively different approach, wherein the service composition process

provides natural language processing capabilities to analyze user requests written

in natural language documents.

Table 1 summarizes the approaches used to make it easier for end-users to

compose services.

Table 1 Service Composition Visualization Approaches

Approach Characteristic Examples

WYSIWYG
Provides an overview of web service layouts by presenting a preview of the
capabilities (response) of the selected web service

[5, 6]

Wizard
Provides a composite web service creation stage including the location of each
primitive service, service invocation sequence, and service composition output

[16] [20] [24]

High-level graphic
language

Provides a graphic language that can be understood by end-users to be able to
describe composite services at a business level according to user requirements

[17]

Workflows
Implement a flowchart to assist end-users in determining the order of the web
service arrangement

[18] [22] [21]
[23]

Spreadsheets
Adopt spreadsheets capability in storing the web services in cells and linking
between cells using formulas

[25]

Web (Service) Mashups Develop end user own applications by repurpose existing web data and APIs
[26] [27] [28]

[29] [30]

It is necessary to consider user preferences to complete user satisfaction with

the results of service compatibility. User preference becomes an implicit

requirement, which complements the explicit requirements directly provided by the

user. The best composition results present a suitable choice of available Web

services considering global and local constraints related to QoS and user

preferences [19]. PASS [31] uses user preferences and initial conditions as a

personalized requirement. The requirements that have been compiled are used as

the basis for automatically composing composite services. Practical examples of

applying preference are provided by Hua et al. [32] and Zhao et al. [33]. Hua et al.

[32] used preferences to help tourists plan travel plans. The complexity of the

problem in determining the travel plan is influenced by the variety of transportation

services and transport network changes.

4. Research Opportunities

Service composition is still the prerogative of professional programmers.

Although some service composition standards provide intuitive visual abstraction,

composing composite services still requires development expertise and software

engineering knowledge. Both skills are not owned by the end-user (knowledge

worker) as the party who has the requirements for composite services. An often-

overlooked limitation of current systems is that they do not make composition

languages accessible to end-users [34] [5]. As the main users of services, end-users

should be given more support to easily compile composite services and get the

result according to their needs. Also, web service technology until today has

focused exclusively on machine computing and does not consider the special needs

that arise when humans are involved in applications. Therefore, more needs to be



46 Int. Journal of Applied IT Vol. 04 No. 01 (2020)

done to reconcile humans, and machines need to enable the two [34] seamless

integration.

Current developments in IT concepts and technologies such as big data, cloud

computing, mobile device technology, IoT, and social networks also influence the

emergence of research opportunities in the area of service composition. IoT and

mobile technology are driving the emergence of web services at scale. This web

service also expands the use of the language used to describe web services no

longer using WSDL but using plain text. The shift in languages outside the standard

causes the composition of services to use new techniques such as web information

extraction, natural language processing, data and text mining, collaborative

tagging, and information retrieval [35]. The success of the concept of big data and

cloud computing also provides new challenges in the area of service composition.

The development of existing algorithms and models can create composite services

from online services in a huge number and spread in the cloud. They must be

accessed simultaneously into a coherent system, which is a challenge that must be

answered [35] and causes the formation of an abstraction layer that shifts the focus

from infrastructure and operations to cloud services [34]. Online service

composition can provide a promising direction for achieving scalable and adaptive

composition solutions for handling large-scale, highly dynamic, and diverse big

data services. Social networks also support the availability of a very large number

of services such as big data. The growth of social network users who use the various

services provided raises the challenge of providing composite services based on

social relationships. One of the emerging opportunities is how to present potential

composite services to service users by detecting hidden relationships between

services through recording service user interactions with service data [35].

Arranging services across multiple mobile devices in ubiquitous environments

presents new challenges that do not occur in traditional service composition

settings—particularly composition mechanisms in pervasive environments that

address context awareness, heterogeneity, and device contingencies. For example,

unpredictable availability of mobile services and devices), and personalization

(e.g., service provision based on user preferences) [11].

The provision of a service computing system platform that is reliable and easy

to use also contributes to the service composition process, especially for end-users.

Such platforms must be equipped with multiple intelligences capable of

determining interactions between services and improving processing and data flow

[34]. Dependence and conflict between services must also be considered to meet

the composition of web services aware of QoS. Until recently, existing methods

did not include conflicts and dependencies between web services. The task's service

implementations are selected separately from other tasks [36].

5. Conclusion and Future Works

The study that has been conducted aims to create a resume of approaches,

constraints, characteristics, and research opportunities on user-centered service

composition issues. The analysis was carried out by observing 30 papers that have

been published in the international database journal, including proceedings and

periodical journals. The results obtained, the most service composition approach

proposed by the researcher is web mashups and flowcharts. Web mashups are the

preferred approach because mashups can describe the service output easily

understood by end-users. Then, the flowchart approach is proposed mainly because

the service composition's logic is to arrange a collection of web services in a flow

that exchanges messages between one web service and another. After identifying

the various approaches proposed in previous studies, the next work to be done is to



Int. Journal of Applied IT Vol. 04 No. 01 (2020) 47

create a general model of user-centered service composition. This model can be

generated by implementing meta-analysis.

Bibliography

[1] M. P. Papazoglou, P. Traverso, S. Dustdar and F. Leymann, "Service-Oriented
Computing: State of The Art and Research Challenges," Computer, vol. 40, no. 11, pp.
64-71, 2007.

[2] M. P. Papazoglou, "Service-Oriented Computing: Concepts, Characteristics, and
Directions," in Proceedings of the Fourth International Conference on Web Information
Systems Engineering (WISE'03), 2003.

[3] G. Baryannis and D. Plexousakis, "Automated Web Service Composition: State of the
Art and Research Challenges," Information Systems Laboratory Hellas Institute of
Computer Science, 2010.

[4] M. P. Singh and M. N. Huhns, Service-Oriented Computing: Semantics, Processes,
Agents, John Wiley & Sons, Ltd, 2005.

[5] X. Liu, G. Huang and H. Mei, "Towards End-User Service Composition," in 31st
Annual International Computer Software and Applications Conference (COMPSAC
2007), 2007.

[6] X. Liu, G. Huang, and H. Mei, "A User-Oriented Approach to Automated Service
Composition," in 2008 IEEE International Conference on Web Services, 2008.

[7] N. Laga, E. Bertin, and N. Crespi, "User-centric services and service composition, a
survey," in 32nd Annual IEEE Software Engineering Workshop, 2009.

[8] Z. Wu, S. Deng, and J. Wu, Service Computing: Concepts, Methods and Technology,
Elsevier inc, 2015.

[9] D. Booth, H. Haas, F. McCabe, M. Champion, C. Ferris, and D. Orchard, "Web
Services Architecture," W3C, 2004.

[10] S. Kona, A. Bansal, G. Gupta, and T. D. Hite, "Web Service Discovery and
Composition using USDL," in 8th IEEE International Conference on E-Commerce
Technology and the 3rd IEEE International Conference on Enterprise Computing, E-
Commerce, and E-Services (CEC/EEE'06), 2006.

[11] Q. Z. Sheng, X. Qiao, A. V. Vasilakos, C. Szabo, S. Bourne, and X. Xu, "Web services
composition: A decade's overview," Information Sciences, vol. 280, pp. 218-238, 2014.

[12] I. EI Bitar, F.-Z. Belouadha and O. Roudies, "Review of Web Services Description
approach," in 8th International Conference on Intelligent Systems: Theories and
Applications (SITA), 2013.

[13] M. Vukovic, "Context-aware service composition," University of Cambridge
Computer Laboratory, 2007.

[14] H.-y. Paik, A. L. Lemos, M. C. Barukh, B. Benatallah, and A. Natarajan, Web Service
Implementation and Composition Techniques, Springer, 2017.

[15] X. Xiang and G. Madey, "A Semantic Web Services Enabled Web Portal Architecture,"
in IEEE International Conference on Web Services (ICWS'04), 2004.

[16] G. Chafle, G. Das, K. Dasgupta, A. Kumar, S. Mittal, S. Mukherjea and B. Srivastava,
"An Integrated Development Environment for Web Service Composition," in IEEE
International Conference on Web Services (ICWS 2007), 2007.

[17] Y. Han, H. Geng, H. Li, J. Xiong, G. Li, B. Holtkamp, R. Gartmann, R. Wagner and
N. Weissenberg, "VINCA – A Visual and Personalized Business-Level Composition
Language for Chaining Web-Based Services," in ICSOC 2003, 2003.

[18] B. Pi, G. Zou, C. Zhong, J. Zhang, H. Yu, and A. Matsuo, "Flow Editor: Semantic Web
Service Composition Tool," in 2012 IEEE Ninth International Conference on Services
Computing, 2012.

[19] H. Fekih, S. Mtibaa, and S. Bouamama, "User-centric Web services Composition
Approach Based on Swarm Intelligence," in IEEE 18th International Conference on
High-Performance Computing and Communications; IEEE 14th International
Conference on Smart City; IEEE 2nd International Conference on Data Science and
Systems, 2016.

[20] T. Yamaizumi, T. Sakairi, M. Wakao, and H. Shinomi, "Easy SOA: Rapid Prototyping
environment with web Services for End Users," IEEE International Conference on Web
Services (ICWS'06), 2006.



48 Int. Journal of Applied IT Vol. 04 No. 01 (2020)

[21] S. Saifipoor, B. T. Ladani, and N. Nematbakhsh, "A Dynamic Reconfigurable Web
Service Composition Framework Using Reo Coordination Language," in Fifth
European Conference on Web Services, 2007.

[22] J. Rao, P. Kungas and M. Matskin, "Logic-based Web services composition: from
service description to process model," in 2004 IEEE International Conference on Web
Services, 2004.

[23] K. Fujii and T. Suda, "Dynamic service composition using semantic information," in
2nd international conference on service-oriented computing, 2004.

[24] I. Weber, H.-Y. Paik and B. Benatallah, "Form-Based Web Service Composition for
Domain Experts," ACM Transactions on the Web, vol. 8, no. 1, 2013.

[25] Z. Obrenovic and D. Gasevic, "End-User Service Computing: Spreadsheets as a
Service Composition Tool," IEEE Transactions on Services Computing, vol. 1, no. 4,
pp. 229-242, 2008.

[26] E. M. Maximilien, A. Ranabahu and K. Gomadam, "An Online Platform for Web APIs
and Service Mashups," IEEE Internet Computing, vol. 12, no. 5, pp. 32-43, 2008.

[27] C. Cappiello, F. Daniel, M. Matera, M. Picozzi, and M. Weiss, "Enabling End-User
Development through Mashups: Requirements, Abstractions, and Innovation
Toolkits," in IS-EUD 2011: End-User Development. Lecture Notes in Computer
Science, vol 6654, 2011, pp. 9-24.

[28] M. Matera, M. Picozzi, M. Pini, and M. Tonazzo, "PEUDOM: A Mashup Platform for
the End User Development of Common Information Spaces," in ICWE 2013: Web
Engineering, 2013, pp. 494-497.

[29] D. Lizcano, F. Alonso, J. Soriano, and G. López, "A component- and connector-based
approach for end-user composite web applications development," Journal of Systems
and Software, vol. 94, pp. 108-128, 2014.

[30] A. Namoun, T. Nestler and A. D. Angeli, "Service Composition for Non-Programmers:
Prospects, Problems, and Design Recommendations," in 2010 Eighth IEEE European
Conference on Web Services, 2010.

[31] Y. Li, J. Huai, H. Sun, T. Deng and H. Guo, "PASS: An Approach to Personalized
Automated Service Composition," in 2008 IEEE International Conference on Services
Computing, 2008.

[32] Y. Hua, J. Cao, Q. Gu and Y. Tan, "PD-TRP: A Service Composition Approach for the
Personalized and Optimized Door-to-Door Travel Plan Recommendation," in 2017
IEEE International Conference on Web Services (ICWS), 2017.

[33] Y. Zhao, S. Wang, Y. Zou, J. Ng, and T. Ng, "Automatically Learning User Preferences
for Personalized Service Composition," in 2017 IEEE 24th International Conference
on Web Services, 2017.

[34] A. L. Lemos, F. Daniel and B. Benatallah, "Web Service Composition: A Survey of
Techniques and Tools," ACM Computing Surveys (CSUR), vol. 46, no. 3, 2016.

[35] A. Bouguettaya, M. Singh, M. Huhns, Q. Z. Sheng, H. Dong, Q. Yu, A. G. Neiat, S.
Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H. Wang, D.
Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, Y. Wang, B. Blake, S.
Dustdar, F. Leymann, and M. P. Papazoglou, "A Service Computing Manifesto: The
Next 10 Years," Communication of The ACM, vol. 60, no. 4, pp. 64-72, 2017.

[36] C. Jatoth, G. Gangadharan, and R. Buyya, "Computational Intelligence Based QoS-
Aware Web Service Composition: A Systematic Literature Review," IEEE
Transactions on Services Computing, vol. 10, no. 3, pp. 475-492, 2017.


