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Seismic parameters provide important information that describes the characteristics of an 
earthquake. The magnitude parameter is one of the essential seismic parameters in making 
the right decision regarding earthquake disaster mitigation. Determining the magnitude of 
an earthquake must be done early because this information represents the size of the 
earthquake and the potential damage it causes. If the determination of the earthquake’s 
magnitude is delayed, emergencies such as the evacuation of residents and post-disaster 
recovery may be disrupted. This study attempts to estimate the earthquake magnitude 
parameters based on Primary (P) wave signals using several machine learning algorithms 
for regression, such as Neural Network Regression (NNR), Random Forest Regression 
(RFR), and Support Vector Machine Regression (SVMR). The experimental results show 
that the RFR can produce the best estimation with an R-squared (R2) value of 0.946 and a 
root mean square error (RMSE) of 0.087. 
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1. Introduction 

The characteristics of an earthquake can be identified through various seismic 
parameters calculated after the earthquake occurs. These parameters include the 
location of the epicenter of the earthquake, the origin time, the magnitude, the depth 
of the earthquake, and so on. Earthquake magnitude calculation is used to estimate 
the energy released by earthquakes. It also provides essential information for 
scientists in studying seismology and earthquake behavior. Information on the 
earthquake’s magnitude can provide initial clues about the earthquake's strength. 
Earthquakes with higher magnitudes have greater energy and are more likely to 
cause further disasters such as tsunamis. Therefore, calculating the estimated 
magnitude of an earthquake needs to be done early and quickly so that decisions 
related to disaster mitigation can be made earlier. 

In general, calculating various seismic parameters can be done using seismic 
signals or Global Navigation Satellite System (GNSS) data. Today the seismic 
signal is the primary raw data used in calculating seismic parameters, including the 
magnitude parameter.  

Seismic wave signals are categorized into several types of waves based on the 
arrival time at the seismometer as the receiver, namely Primary (P) waves, 
Secondary (S) waves, and surface waves [1][2]. P-waves are the first seismic wave 
signals that arrive at the receiver after an earthquake occurs. S-waves are seismic 
wave signals that come after the P signal. Surface waves are seismic wave signals 
propagating on the earth's surface that arrive at the receiver after the P and S 
signals. Most of the seismic parameters are calculated using S signals. However, 
this study seeks to utilize the P signal for the early estimation of the magnitude so 
that the information obtained can be more beneficial for disaster mitigation. 

Many studies have been carried out to estimate the magnitude quickly either 
based on seismometer signals [3]-[7] or based on GNSS data [8][9][10]. Apart from 
[5] and [8], the studies use signal processing and specific formulas to estimate the 
magnitude value, requiring a relatively high computational cost. Machine learning 
is expected to be an alternative solution for the heavy computation problem. 

The study [5] in 2018 used a machine learning approach, namely the Support 
Vector Machine Regression (SVMR) method. The study focuses on earthquake 
events with a magnitude less than 5.0 using 12 features of the P signal. Earthquakes 
greater than 6.5 are not covered yet in the study. Another study in 2021 [8] used 
Genetic Algorithm (GA) to estimate the magnitude of earthquakes based on GNSS 
time series data. The method proposed in the study still requires many 
predetermined assumptions to estimate accurately. So it still needs further 
improvement. 

In [5], SVMR gives a good accuracy of the magnitude estimation. However, 
many studies show various performances of SVMR by comparing the performance 
of SVMR with Neural Network Regression (NNR) [11][12], SVMR with Random 
Forest Regression (RFR) and NNR [13], and others [14]. In [11], SVMR performs 
better than NNR even though both performances are relatively poor. NNR performs 
well in [15] and is even better than SVMR in [12]. In another study [13], RFR 
outperformed SVMR and NNR in performance. In [14], RFR is better than SVMR 
and in [16], RFR is better than NNR. RFR performance is also excellent in [17].  

This study aims to estimate the earthquake’s magnitude from the seismic signals 
using machine learning-based regression techniques. Due to all performance 
variations shown in previous studies, as mentioned in the last paragraph, this study 
tested three classic machine learning algorithms widely used, namely NNR, 
SVMR, and RFR, to determine their performance in estimating the earthquake’s 
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magnitude. The performance of each method is measured to obtain the best 
estimation result.  

2. Material and Methods 

There are at least two essential requirements that must be fulfilled by the 
proposed system. First, the estimation must be calculated early and immediately 
after the earthquake. Second, the estimation results must be close to the actual 
magnitude value. The seismic agency usually officially announces the actual 
magnitude value several hours after the earthquake. 

2.1. Proposed Scheme of Magnitude’s Early Estimation 

The estimation scheme proposed in this study can be seen in Figure 1. The input 
data for this estimation system is the P-wave of the seismic signal. The P signals 
are used as input because they are the earliest part of the earthquake waves received 
by the seismometer. The signals are then processed in the feature extraction to 
generate relevant features to the magnitude estimation. The features obtained then 
become the input for machine learning to estimate the magnitude value using the 
regression technique. 

 

 
Figure 1 The Scheme of The Proposed Early Estimation System 

2.2. Feature Extraction  

The features used for magnitude estimation are extracted from the P-wave 
signal. The signal is used to calculate the magnitude estimation as early as possible, 
considering that the P-wave signal is the earliest signal to arrive at the seismometer 
device after an earthquake occurs. The estimation proposed in this study uses three 
P-wave signals as input acquired from three different seismometer stations. 

In this study, the feature extraction generates two features from each P-wave 
signal, i.e., rupture duration (𝑇଴) and P-wave dominant period (𝑇ௗ). Hence, the 
feature vector generated from the feature extraction is stated in Equation 1 as 
follows. 

 
 𝑓 = [𝑇଴ଵ

, 𝑇ௗଵ
, 𝑇଴ଶ
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, 𝑇଴ଷ
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with 𝑇଴୧

 and 𝑇
୧
 are the rupture duration and P-wave dominant period, respectively, 

generated from the 𝑖-th seismometer. The calculation process including the formula 
of each feature is described in the following subsections. 

2.2.1. Rupture Duration (𝑇଴)  

It is the amount of time that an area of fault needs to rupture when an earthquake 
occurs. The following procedure is performed to obtain this feature [18][19]. The 
seismic signal is filtered first using a high-pass filter (HPF) to obtain the P-wave. 
The filtering results are then squared to obtain velocity-squared time-series data 
from the signal. After that, a smoothing technique using a triangle function is used 
to obtain the envelope function of the signal. From the envelope signal, the time 
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parameters (𝑇𝑝), which indicate the signal duration when the signal amplitude 
reaches 𝑝 % of the peak amplitude, with 𝑝 = 90, 80, 50, and 20, are calculated. 
After the signal durations are obtained, the rupture duration can be calculated using 
Equation 2 as follows [18][19]. 

 
 𝑇଴ = (1 − 𝑤) ∙ 𝑇ଽ଴ + 𝑤 ∙ 𝑇ଶ଴ Equation 2 

 
with 𝑤 is the weight calculated using the formula in Equation 3 [10]. 
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ቂ
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 Equation 3 

   

and 𝑇ଽ଴, 𝑇 ଴, 𝑇ହ଴, 𝑇ଶ଴ are the signal durations 𝑇𝑝 calculated starting from the P-

wave arrival time with 𝑝 = 90, 80, 50, and 20, respectively. 
 

2.2.2. P-wave Dominant Period (𝑇ௗ) 

It is the period representing the most energetic part of the wave in the signal 
spectrum. The steps to calculate this feature are as follows [20]. The seismogram, 
the velocity signal, is integrated to obtain the displacement signal. The ratio 𝑟 
between the velocity signal integral and the displacement signal integral in a 
specific time interval, generally set to 3 seconds [20], is calculated with the formula 
stated in Equation 4 as follows [20]. 

 

 𝑟 =
∫ ௨̇మ(௧)ௗ௧

ഓబ
బ

∫ ௨మ(௧)ௗ௧
ഓబ

బ

 Equation 4 

 
with 𝜏଴ representing the observation time in seconds, �̇�(𝑡) is the velocity signal in 
𝑡 and 𝑢(𝑡) is the displacement signal in 𝑡, and 𝑡 represents time in seconds. The 
Equation 5 then calculates the 𝑇ௗ parameter as follows. 
 

 𝜏௖ =
ଶగ

√௥
 Equation 5 

 
where 𝑟 is the previously calculated ratio.  

2.3. Machine Learning used for the Magnitude’s Early Estimation 

This study uses machine learning-based regression techniques to estimate the 
magnitude values. The regression methods tested in this study were NNR, RFR, 
and SVMR. The performance parameters measured are R-square (R2) and Root 
Mean Square Error (RMSE). 

The dataset used in this study consists of seismic features processed from 
earthquake signals with the magnitude above 7.0 that occurred from 1990 to 2019. 
There are 298 earthquakes included in the dataset-making process. All seismic 
signals used for the dataset were taken from the official public repositories of the 
GEOFON [21] and Incorporated Research Institutions for Seismology (IRIS) [22]. 
For the experiment purpose, the dataset is divided into three parts of data, namely 
training data, validation data, and testing data, with a ratio of 60%:20%:20% for 
each data part, respectively. 

For each regression method tested, hyperparameters tuning is performed to 
obtain the best parameter configuration that produces the best performance for each 
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method. The hyperparameter tuning is performed on the validation data, which is 
20% of the data, using the Grid Search method. The tuning and testing results are 
then validated using the Nested K-Fold Cross Validation. The nested cross 
validation consists of two cross validation schemes, i.e., the inner loop and the outer 
loop. Each scheme uses the K-fold concept with the 𝐾 values are set to be 𝐾 =  4 
for the hyperparameter tuning and 𝐾 =  5 for the final testing validation.  

3. Results and Discussions 

A list of hyperparameters of each regression method which are tuned for the 
experiment carried out in this study are described as follows. 

 
1. NNR. The tuned hyperparameters are the number of hidden layers (hl_size) 

including the size parameter of each layer, and the activation function 
(act_func). 

2. RFR. There are three hyperparameters that are tuned in the experiment, i.e., 
the number of estimators (num_estimators), the maximum depth of the tree 
(max_depth), and the minimum samples allowed to form new leaves in the 
generated tree (min_samples). 

3. SVMR. The hyperparameter tuning is performed on the kernel type 
(type_kernel), the C values (val_C), and the gamma values (gamma_val) 
of the regressor model. 

 
The range of values that is set in the tuning process for each hyperparameter 

can be seen in Table 1. According to the hyperparameter’s range of values shown 
in Table 1, the number of configurations tested in the experiment for each algorithm 
are 32, 135, and 36 configurations for NNR, RFR, and SVMR, respectively. 

 
Table 1 The Range of Hyperparameter Values  

Regressor  Hyperparameter Range of Values 

NNR 
hl_size 

act_func 

[(6,), (8,), (10,), (6,10), (8,10), 
(10,20), (10,50), (10,100)] 

['identity', 'logistic', 'tanh', 'relu'] 

RFR 
num_estimators 

max_depth 
min_samples 

[10, 20, 50, 100, 200] 
[1, 2, 3, 4, 5, 10, 15, 20, 25] 

[2, 5, 10] 

SVMR 
type_kernel 

val_C 
gamma_val 

['linear', 'poly', 'rbf'] 
[1, 5, 10, 30] 

[0.01, 0.1, 0.2] 

 
The best performance of the experiment results of each regression method 

tested is shown in Table 2. As mentioned earlier, this study measured two 
performance parameters in the experiment, i.e., R2 and RMSE. 

 
Table 2 The Best Results and Hyperparameter Settings  

Regressor  R2 RMSE Hyperparameter’s Best Setting 

NNR 0.151 0.342 
hl_size = (10, 50) 
act_func = 'relu' 

RFR 0.946 0.087 
num_estimators = 200 

max_depth = 25 
min_samples = 2 

SVMR 0.227 0.337 
type_kernel = ‘rbf’ 

val_C = 30 
gamma_val = 0.2  
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The R2 is the coefficient of determination that provides information about the 
goodness of fit of the regression model, measuring the proportion of variance in 
the dependent variable explained by the independent variables. For the case in this 
study, the dependent variable is the earthquake magnitude, while the independent 
variables are the predictors represented by the seismic features. A higher R2 
indicates a better fit of the model, meaning that the model accounts for more of the 
variation in the data. 

Table 2 shows that the RFR model has a much higher R2, which is 0.98, than 
the NNR and SVMR models, which are 0.151 and 0.22, respectively. It suggests 
that the RFR model fits the data much better and explains more of the variation in 
the magnitude estimation. This could be due to the stronger ability of the RFR 
algorithm to capture complex interactions and relationships among the predictor 
variables. 

On the other hand, the RMSE provides information about the accuracy of the 
magnitude estimation, measuring the average difference between the predicted and 
actual values. A lower RMSE indicates better accuracy, meaning that the model 
has smaller errors in its estimation. 

It is shown in Table 2 that the RFR model has the lowest RMSE, which is 0.087. 
It indicates that it has the highest accuracy of the three models in predicting the 
earthquake magnitude. The NNR and SVMR models have much higher RMSE 
values, i.e., 0.342 and 0.337, respectively, suggesting higher errors and lower 
accuracy in their estimation. 

R2 and RMSE results suggest that the RFR model has a much better fit to the 
data than the NNR and SVMR models. Therefore, for the earthquake magnitude 
estimation discussed in this study, the RFR model might be a more appropriate 
choice for the data. 

4. Conclusions 

The high R2 value of 0.98 for the earthquake magnitude estimation using RFR 
suggests that this method has strong predictive power and can be considered a 
reliable approach for this task. On the other hand, the low R2 values obtained from 
NNR (0.151) and SVMR (0.22) indicate that these methods may not be suitable for 
earthquake magnitude estimation or require further optimization to improve their 
performance. 

Furthermore, the RMSE results also support the conclusion that the RFR has 
better accuracy in predicting earthquake magnitudes, as it has the lowest RMSE 
value of 0.087. The higher RMSE values obtained from NNR (0.342) and SVMR 
(0.337) indicate that these methods have a higher error rate in predicting earthquake 
magnitudes. 

Overall, the conclusion is that the RFR is the most suitable method for 
earthquake magnitude early estimation among the three tested methods, at least for 
the data used in this study. 
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