
Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

IJAIT (International Journal
of Applied Information Technology)

http://journals.telkomuniversity.ac.id/ijait/

Comparison Analysis of Dijkstra and A-Star Algorithms in NPC
(Non-Playable Character) Movement on a Single-Player Game
Case Study: Chaos Crossing Game

Dany Zaky Dhaifullah a, *, Nelly Oktavia Adiwijaya a, Priza Pandunata a

a Dept. of Computer Science, Jember University, Indonesia
192410103024@mail.unej.ac.id, nelly.oa@unej.ac.id, priza@unej.ac.id

A R T I C L E I N F O A B S T R A C T

Received May 31st, 2023
Revised July 13th, 2023
Accepted August 22nd, 2023
Available August 1st, 2024

Keywords
Artificial Intelligence, pathfinding,
dijkstra algorithm, A-Star
algorithm.

Artificial intelligence in a game plays a vital role in enhancing the player's gaming
experience, especially in single-player games. NPCs are the primary means of interaction in
single-player games, assisting and guiding players like interactions with other players. Chaos
Crossing requires pathfinding technology for optimal NPC movement, allowing them to
navigate the environment grid-based while avoiding static obstacles. The Dijkstra algorithm
and the A-Star algorithm need to be compared because, based on previous research, the
Dijkstra algorithm has proven effective for calculating the shortest distance to the destination
point in a static environment based on a two-dimensional grid with characters moving in it,
as well as the A-Star algorithm can avoid a static environment based on grid and is used to
determine the shortest distance to the destination point in the character's movement. This
quantitative research aims to find a solution that optimizes NPC movement by testing and
comparing Dijkstra's and A-Star's algorithms in a static environment grid based on the game
Chaos Crossing. The test results and comparative analysis show that the A-Star algorithm
performs a faster route search with an average value of 36.37 seconds than Dijkstra's
algorithm with an average matter of 20.76 seconds and utilizes memory more efficiently with
an average value of 20.19 MB than Dijkstra's algorithm with a value 22.17 MB on average.
However, Dijkstra's algorithm produces a slightly shorter track distance, with an average
value of 42.26 units, compared to the A-Star algorithm, with an average value of 42.39 units.

Acknowledgement

We are grateful for the institutional support from the Department of Computer Science and the University of Jember.

* Corresponding author at:

Department of Computer Science, University of Jember
Jl. Kalimantan Tegalboto No.37, Sumbersari, Jember, 68121
Indonesia
E-mail address: 192410103024@mail.unej.ac.id

ORCID ID:

First Author: 0009-0000-7486-4993

https://doi.org/10.25124/ijait.v8i1.6053
Paper_reg_number IJAIT000080104 2024 © The Authors. Published by School of Applied Science, Telkom University.
This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/

56 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

1. Introduction

The game industry is growing rapidly, and one of the essential hopes of a good
game is a game that can be more interesting, immersive, and innovative than other
games [1]. This hope is because game technology continues to develop, one of
which is artificial intelligence which allows players to compete against computers
in games [2][3], so artificial intelligence in games is very influential in improving
the playing experience [4], especially in single-player games [5]. A single-player
game is a game that consists of only one player, so it only relies on a Non-Playable
Character (NPC) to interact with other players [5].

In the case of this research is a game called Chaos Crossing, which has a top-
down perspective on traffic edification. Game Chaos Crossing has a single-player
game mode with a grid-based environment that contains the Main Character (MC)
and game content. The problem with this game is that game content has two
different types of objects: the NPC as a dynamic object and the environment as a
static object. The NPC in the Chaos Crossing game aims to move from the starting
point to the destination point, but this movement needs to be improved due to the
static environment in the game. With a fixed environment, NPCs need pathfinding
technology to move optimally by avoiding static environments to reach their
destination [6][7].

Based on the description above, one way to solve the NPC problem is to
determine which path to follow by applying the artificial intelligence pathfinding
method [6][8][9]. The pathfinding method finds the shortest route in an
environment by identifying pathways that can be passed and environmental
elements that cannot [6]. Several algorithms can solve pathfinding problems with
a grid-based static environment, namely the Dijkstra algorithm and the A-Star
algorithm [9]–[12].

Dijkstra algorithm is a shortest path tracing algorithm that explores nodes
sequentially, starting from the initial node and updating the shortest distance to
neighboring nodes [12]–[15]. Dijkstra does not use heuristics and looks for the
shortest path based on the actual cost from the initial node to the currently
processed node [14], [16]. On the other hand, the A-Star algorithm is a variation of
Dijkstra, which uses a heuristic function to estimate the remaining cost from the
node being processed to the destination node [17][18]. With this heuristic function,
A-Star can prioritize the vertices with the lowest estimated prices to find the
shortest path in the graph with non-negative path costs [8][19][20].

Dijkstra and A-Star algorithms must be compared because, based on previous
research, the Dijkstra algorithm has proven effective for calculating the shortest
distance to the destination point in a two-dimensional grid-based static
environment with characters moving [12]. On the other hand, the A-Star algorithm
can avoid grid-based static environments and determines the shortest distance to
the destination point in the character's movement [9]. Previous research has also
proven that the A-Star algorithm has a higher speed in route search than Dijkstra
[15]. However, it is essential to note that it is possible that the Dijkstra algorithm
also has advantages over other comparison parameters, such as memory usage,
which can be considered in selecting an algorithm to improve performance and
compatibility when applied to a game. Therefore, a comparative analysis between
the Dijkstra and A-Star algorithms is needed to determine the most optimal
algorithm for NPC movement against a grid-based static environment in the Chaos
Crossing game.

The Dijkstra algorithm and the A-Star algorithm have their advantages and
disadvantages. Therefore, in this study, a comparative analysis will be carried out

 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024) 57

between the Dijkstra algorithm and the A-Star algorithm to obtain the optimal
algorithm for applying NPC movement to a static environment in the Chaos
Crossing game. This research aims to find a solution that optimizes NPC movement
by testing and comparing Dijkstra and A-Star algorithms in a fixed environment
grid based on the game Chaos Crossing.

2. Research Method

This research uses quantitative data, conducting a comparative analysis that
aims to find the optimal algorithm for NPC movement in the Chaos Crossing game.
To get the best results from the algorithm, it is necessary to test each parameter for
comparison in finding the optimal algorithm for NPC movement in the Chaos
Crossing game. The research process involves several stages, as shown in Figure
1.

Figure 1 Research Methodology

2.1. Design and Implementation

Five different level designs were made, with a different static environment for
each level design. The level design creates game obstacles, providing players with
an exciting and challenging playing experience [21]. Next, three different starting
and destination positions are placed on the NPC at each level design. The level
designs are structured in such a way as to stay out of research case studies, adopting
the same design style as in the Chaos Crossing game. Next, the Dijkstra and A-Star
algorithms are implemented on the NPC against a static environment for each level
design.

2.2. Testing

The testing process aims to obtain data based on comparative parameters.
Testing was conducted using simulation techniques at five different level designs
and three various NPC position points at each scenario. The data testing process
uses the Dijkstra and A-Star algorithms implemented in the Chaos Crossing game
using the Unity Engine. The types of variable data collected are listed in Table 1.

Table 1 Data Variable Types

No Variable Description Data Type Range

1
Route
Finding
Time

Processing time for
searching the route from the
starting point to the
destination by the Dijkstra
algorithm or A-Star
algorithm in one iteration.

Float 0-1000 seconds

58 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

No Variable Description Data Type Range

2
Path
Distance

In one iteration, the path
distance is needed for the
NPC to move from the
starting point to the
destination by the Dijkstra
algorithm and A-Star
algorithm.

Integer 0-1000 units

3
Memory
Usage

The total memory usage
used by Dijkstra and A-Star
algorithms in one iteration.

Float 0-100 MB

The variable type of track distance uses units because the testing process is

carried out using the Unity Engine. In the Unity Engine, the unit of coordinates
used to represent an object's position is called a unit. This unit does not refer to a
specific physical unit, such as meters, but a relative unit used in the Unity
environment. In Unity Engine, data collection on the memory usage variable can
be obtained using the 'System.GC.GetTotalMemory()' method. This method allows
one to get the total amount of memory currently allocated by the running
application. The test is carried out by implementing the Dijkstra and A-Star
algorithms at five level designs and directly comparing the two algorithms at each
implemented level design.

Figure 2 Test Scenario

There are five test scenarios, and each procedure is carried out by comparing
the Dijkstra and A-Star algorithms implemented in three NPC movement positions
to the level design. The flow of the test scenario can be seen in Figure 2. The case
in the single-player game Chaos Crossing has a static environment that keeps the
algorithm calculations fixed so that each design is tested only once.

2.3. Analysis of Test Results

The data analysis technique to produce a comparison between the Dijkstra
algorithm and the A-Star algorithm is to determine the average result of the data
collected based on the comparison parameters of each starting point to the
destination at the level design using the formula in Equation 1.

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 =

௫భ ା௫మ ା...ା ௫

 Equation 1

 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024) 59

With the average results of the comparative parameter data for each level
design, the efficiency and effectiveness of the Dijkstra and A-Star algorithms can
be identified, and the best algorithm can be determined from the comparisons in
each parameter based on the data collection results.

2.4. Interpretation and Conclusion

The interpretation was made to identify the advantages and disadvantages of
Dijkstra and A-Star algorithms in the Chaos Crossing game. Conclusions are
obtained from the results of analysis and interpretation.

3. Results and Discussion

3.1. Result of Design and Implementation

Based on the research method, the first step is to arrange five level designs and
then place three starting points and destination points for each level design. The
preparation results can be seen in Figure 3; the effects of placing the starting and
destination points are listed in Table 3. To make it easier for visualization in testing
and data analysis, each level's design is changed to a black-and-white format. The
results of the level design conversion to black and white are shown in Figure 4. It
is explained that there are two types of colors. The black color represents a static
environment or a place the NPC cannot pass through, and the white color means
where the NPC can pass.

Figure 3 Results of Five Level Designs

60 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

Figure 4 Five Level Designs in Black and White Format

The arrangement of Level Design 1, Level Design 2, and Level Design 3 use a
reference to the extent of the level design area from the smallest to the largest
because this approach allows for a gradual increase in complexity and challenge in
the game. By starting with a smaller level design, players can understand the basics
of the game and get through the initial levels more easily [21]. Meanwhile, Level
Design 4 and Level Design 5 are arranged based on similarity or resemblance to
the level design in the Chaos Crossing game to present a similar or comparable
experience in terms of gameplay, level layout, or practical design elements.
After the five-level designs were arranged, the Dijkstra and A-Star algorithms were
implemented at each level design using the Unity Engine with the c-sharp
programming language.

3.2. Result of Testing

The testing process is carried out by direct simulation techniques on the Unity
Engine based on route search time, track distance, and memory usage at each
design level. The testing process is carried out in stages from design level 1 to
design level 5, according to predetermined test scenarios.

Table 2 The Results of Data Collection at each Level Design

Points (x,y) Time (s) Distance (unit) Memory (MB)
Start Destination Dijkstra A-Star Dijkstra A-Star Dijkstra A-Star

Level Design 1
(13,8) (28,24) 6.74 0.96 23 23 20.80 18.38
(6,4) (22,4) 5.23 1.84 29 29 20.32 18.91
(17,8) (13,24) 6.42 2.66 30 30 21.68 18.30

Level Design 2
(19,14) (36,30) 29.71 9.93 54 54 23.56 22.80

 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024) 61

Points (x,y) Time (s) Distance (unit) Memory (MB)
Start Destination Dijkstra A-Star Dijkstra A-Star Dijkstra A-Star

(53,11) (2,33) 35.86 8.24 66 67 22.93 22.51
(19,14) (36,14) 13.89 5.92 39 39 20.86 20.43

Level Design 3
(10,28) (45,27) 56.43 13.08 55 55 22.73 18.83
(25,30) (30,25) 64.84 30.11 75 74 23.26 18.47
(1,11) (36,29) 52.50 22.99 64 64 22.66 19.93

Level Design 4
(20,13) (6,17) 4.31 1.82 28 29 21.28 18.25
(31,9) (6,26) 6.25 1.58 35 35 22.37 18.91
(2,8) (24,24) 6.38 1.49 31 31 21.33 19.87

Level Design 5
(13,22) (27,12) 5.97 2.30 28 28 22.53 22.31
(21,31) (2,12) 9.77 4.13 39 39 22.88 22.13
(1,8) (33,22) 7.16 2.07 39 40 23.37 22.81

Based on the data obtained in Table 2, it was found that the test results in the

route search time on the Dijkstra algorithm obtained a minimum value of 4.31
seconds at design level 4 and a maximum value of 64.84 seconds at design level 3,
while the a-star algorithm got the minimum value is 0.96 seconds at design level 1
and the maximum value is 64.84 seconds at design level 3. In the path distance, it
is found that Dijkstra's algorithm obtains a minimum value of 23 units at design
level 1 and a maximum value of 75 units at design level 3, while the a-star
algorithm gets a minimum value of 23 units at design level 1 and a maximum value
of 74 units at design level 3. In terms of memory usage, it is found that the Dijkstra
algorithm obtains a minimum value of 20.32 MB at design level 1 and a maximum
value of 23.37 MB at design level 5, while the A-Star algorithm gets a minimum
value of 18.25 MB at design level 4 and a maximum value of 22.81 MB at design
level 5.

3.3. Analysis of Test Results

After collecting data from the test results, the data is analyzed according to
research data analysis techniques. The average and the comparison of algorithms
are calculated based on the comparison parameters, namely route search time, track
distance, and memory usage.

Figure 5 Comparison of the average Dijkstra Algorithm and A-Star based on Route

Search Time

The results of the first analysis on route search time assume the smaller the
average route search time for each level design, the faster the route search
algorithm will be. Based on the results of calculating the average search time for

6.13

26.49

57.92

5.65 7.63
1.82

8.03

22.06

1.63 2.83
0

10

20

30

40

50

60

70

Level Design 1 Level Design 2 Level Design 3 Level Design 4 Level Design 5

Route Search Time (s)

Dijkstra Algorithm A-Star Algorithm

62 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

each level design in Figure 5, it can be concluded that from level design 1 to level
design 5, the A-Star algorithm is faster in searching routes than the Dijkstra
algorithm. The same thing by previous research, the A-Star algorithm is faster than
the Dijkstra algorithm based on search time [10][15].

(a) (b)

Figure 6 Visualization of Testing (a) Dijkstra and (b) A-Star Algorithm at the Level Design
1 point (6,4) to point (22,4)

The results of the visualization test between the Dijkstra algorithm and the A-
Star algorithm in Figure 6 show that the A-Star algorithm has fewer explore points
than the Dijkstra algorithm. This also indicates that the search time for the A-Star
algorithm is shorter than the Dijkstra algorithm, as explained in Figure 6, with the
grey color representing the algorithm's explore point.

Figure 7 Comparison of the average Dijkstra Algorithm and A-Star based on Path

Distance

The results of the second analysis on route search time assume the smaller the
average path distance for each level design, the faster the NPC will move from the
starting point to the destination. Based on the average calculation results based on
the path distance for each level design in Figure 7, there are slightly different values
at level design 2 and level design 4, so it can be concluded from the results of the
other algorithms at level design 2 and level design 4 that the Dijkstra algorithm
produces a shorter path distance so that the movement of the NPC in moving from
the starting point to the destination is faster than the A-Star algorithm.

27.33

53

64.33

31.33
35.33

27.33

53.33

64.33

31.67
35.33

0

10

20

30

40

50

60

70

Level Design 1 Level Design 2 Level Design 3 Level Design 4 Level Design 5

Path Distance (unit)

Dijkstra Algorithm A-Star Algorithm

 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024) 63

Figure 8 Comparison of the average Dijkstra Algorithm and A-Star based on Memory

Usage

The results of the third analysis on route search time assume the smaller the
average memory usage for each level design, the lighter the algorithm for searching
routes in one iteration. Based on the average results for each level design in Figure
8, from level design 1 to level design 5, the A-Star algorithm is easier to search for
routes in one iteration than the Dijkstra algorithm.

4. Conclusions

The pathfinding method with the Dijkstra algorithm and the A-Star algorithm
can optimally solve the problem of NPC movement to the destination point without
being hampered by the environment in the Chaos Crossing game. The test results
and comparative analysis show that the A-Star algorithm performs a faster route
search with an average value of 36.37 seconds than Dijkstra's algorithm with an
average matter of 20.76 seconds and utilizes memory more efficiently with an
average value of 20.19 MB than Dijkstra's algorithm with a value 22.17 MB on
average. However, Dijkstra's algorithm produces a slightly shorter track distance,
with an average value of 42.26 units, compared to the A-Star algorithm, with an
average value of 42.39 units.

Algorithm comparison analysis can consider using other, more optimal
algorithms in certain situations. Future research can also compare the effectiveness
of the Dijkstra and A-Star algorithms in specific situations. Integrating other
artificial intelligence technologies into developing NPCs, such as machine
learning, is possible to enhance their ability to interact with the game environment
and improve the player's playing experience.

Bibliography

[1] B. Xia, X. Ye, and A. O. M. Abuassba, “Recent Research on AI in Games,” 2020 Int.
Wirel. Commun. Mob. Comput. IWCMC 2020, no. June, pp. 505–510, 2020, doi:
10.1109/IWCMC48107.2020.9148327.

[2] A. Rafiq, T. Asmawaty Abdul Kadir, and S. Normaziah Ihsan, “A Review of
Artificial Intelligence in Serious Game for Public Health,” J. Phys. Conf. Ser., vol.
1830, no. 1, 2021, doi: 10.1088/1742-6596/1830/1/012001.

[3] S. A. Yakan, “Analysis of Development of Artificial Intelligence in the Game
Industry,” vol. 2, no. 2, pp. 111–116, 2022.

[4] Y. Y. Dyulicheva and A. O. Glazieva, “Game based learning with artificial
intelligence and immersive technologies: an overview,” CEUR Workshop Proc., vol.
3077, pp. 146–159, 2022.

[5] T. T. Sujaka, K. A. Latif, S. Hadi, H. Hasbullah, and R. Hammad, “A* Pathfinding
Applications in Two-Dimensional AI Video Games,” Ina. Indones. J. Electr.

20.93
22.45 22.88

21.66
22.93

18.53
21.91

19.08 19.01

22.42

0

5

10

15

20

25

Level Design 1 Level Design 2 Level Design 3 Level Design 4 Level Design 5

Memory Usage (MB)

Dijkstra Algorithm A-Star Algorithm

64 Int. J. Appl. Inf. Technol. Vol 08 No 01 (2024)

Eletronics Eng., vol. 5, no. 1, pp. 25–29, 2022, doi: 10.26740/inajeee.v5n1.p25-29.
[6] P. Harsadi and S. Siswanti, “Penerapan Pathfinding Menggunakan Algoritma A*

Pada Non Player Character (NPC) Di Game,” J. Ilm. SINUS, vol. 17, no. 2, p. 39,
2019, doi: 10.30646/sinus.v17i2.423.

[7] Y. Sazaki, H. Satria, and M. Syahroyni, “Comparison of A∗ and dynamic pathfinding
algorithm with dynamic pathfinding algorithm for NPC on car racing game,”
Proceeding 2017 11th Int. Conf. Telecommun. Syst. Serv. Appl. TSSA 2017, vol. 2018-
Janua, pp. 1–6, 2018, doi: 10.1109/TSSA.2017.8272918.

[8] A. Candra, M. A. Budiman, and R. I. Pohan, “Application of A-Star Algorithm on
Pathfinding Game,” J. Phys. Conf. Ser., vol. 1898, no. 1, 2021, doi: 10.1088/1742-
6596/1898/1/012047.

[9] E. Agung, “Implementasi Metode Pathfinding dengan Algoritma A* pada Game
Rogue-like menggunakan Unity,” Indones. J. Comput., vol. 1, no. 3, pp. 81–89, 2022,
doi: 10.14710/jtk.v1i3.36700.

[10] R. N. Sarbini, I. Ahmad, R. O. Bura, and L. Simbolon, “Comparative Analysis of
Pathfinding Artificial Intelligence Using Dijkstra and a* Algorithms Based on Rpg
Maker Mv,” J. Ris. Inform., vol. 4, no. 3, pp. 283–290, 2022, doi:
10.34288/jri.v4i3.384.

[11] R. Shen, V. Gopalan, and S. Runkun, “A Comparative Review of 2 . 5D vs 3D
Multiplayer Online Battle Arena Game Experience,” 2022.

[12] M. S. Amin, P. Subarkah, R. Umma, and E. B. Prasetya, “Implementasi Algoritma
Dijkstra pada Game Strategi RPG Berbasis Web dengan Framework Javascript P5,”
J. IT CIDA, vol. 8, no. 1, pp. 41–55, 2022.

[13] P. Jakhar, “International Journal of Research Publication and Reviews A Overview
on Pathfinding Algorithm Between A * a nd Dijkstra ’ s Algorithm for 2D Platformer
Games,” vol. 3, no. 11, pp. 91–94, 2022.

[14] R. A. Krisdiawan, A. Permana, E. Darmawan, F. Nugraha, and A. Kriswandiyanto,
“Implementation Dijkstra’s Algorithm for Non-Players Characters in the Game Dark
Lumber,” J. Phys. Conf. Ser., vol. 1933, no. 1, 2021, doi: 10.1088/1742-
6596/1933/1/012006.

[15] S. D. Handy Permana, K. B. Yogha Bintoro, B. Arifitama, and A. Syahputra,
“Comparative Analysis of Pathfinding Algorithms A *, Dijkstra, and BFS on Maze
Runner Game,” IJISTECH (International J. Inf. Syst. Technol., vol. 1, no. 2, p. 1,
2018, doi: 10.30645/ijistech.v1i2.7.

[16] J. Adler and B. F. Ramadhan, “Penerapan Algoritma Dijkstra Pada Game Learning
Matematika Berbasis Android,” Komputika J. Sist. Komput., vol. 10, no. 2, pp. 173–
181, 2021, doi: 10.34010/komputika.v10i2.4551.

[17] I. B. Gede Wahyu Antara Dalem, “Penerapan Algoritma A* (Star) Menggunakan
Graph Untuk Menghitung Jarak Terpendek,” J. Resist. (Rekayasa Sist. Komputer),
vol. 1, no. 1, pp. 41–47, 2018, doi: 10.31598/jurnalresistor.v1i1.253.

[18] M. M. Attoyibi, F. Emma Fikrisa, and A. N. Handayani, “The Implementation of A
Star Algorithm (A*) In the Game Education About Numbers Introduction,” vol. 242,
no. Icovet 2018, pp. 234–239, 2019, doi: 10.2991/icovet-18.2019.57.

[19] A. W. R. Ramadhan and D. Udjulawa, “Perbandingan Algoritma Dijkstra dan
Algoritma A Star pada permainan Pac-Man,” J. Algoritm., vol. 1, no. 1, pp. 12–20,
2020, doi: 10.35957/algoritme.v1i1.411.

[20] N. Kühl, M. Goutier, R. Hirt, and G. Satzger, “Machine learning in artificial
intelligence: Towards a common understanding,” Proc. Annu. Hawaii Int. Conf. Syst.
Sci., vol. 2019-Janua, pp. 5236–5245, 2019, doi: 10.24251/hicss.2019.630.

[21] T. Karlsson, J. Brusk, and H. Engström, “Level Design Processes and Challenges: A
Cross Section of Game Development,” Games Cult., 2022, doi:
10.1177/15554120221139229.

