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Improving localization accuracy and reducing development costs are pivotal keys and main

issues in managing and administrating wireless sensor networks (WSNs). This paper considers

a modern and qualified algorithm that leverages advanced optimization techniques to localize

nodes deployed in outdoor environments. The proposed algorithm, named Intelligent Water

Drops with Simulated Annealing (IWDSA), combines two powerful optimization methods:

Intelligent Water Drops (IWD) and Simulated Annealing (SA). IWD is a qualified stochastic

optimization tool adept at minimizing objective functions. In IWDSA, SA is integrated to

enhance solution quality and prevent IWD from getting trapped in local minima. This paper

ensures that internal distances between nodes are calculated using Received Signal Strength

Indicator (RSSI) measurements. The paper aims to achieve two primary goals. First, it

addresses the challenge of low accuracy in RSSI measurements by employing IWDSA.

Second, it aims to achieve highly accurate localization of unknown sensor nodes in WSNs.

IWDSA enhances localization precision due to its flexible implementation of IWD and SA,

combined with the cost-free utilization of RSSI. Simulation results demonstrate the reliable

performance of the proposed algorithm in solving the low accuracy of RSSI measurements

and localizing unknown nodes with high accuracy. Additionally, simulation results confirm

that the proposed algorithm IWDSA exhibits outstanding performance compared to other

algorithms utilizing optimization techniques, including genetic algorithms, bat algorithms, ant

colony optimization, and swarm optimization. This exceptional performance is evident across

various evaluation metrics, including localization error, localization rate, and simulation

runtime.
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1. Introduction

Wireless sensor networks (WSNs) are scientifically described as networks

comprising a few hundred to several thousand sensor nodes able to connect and

communicate with each other wirelessly in an ad-hoc way [1]. These sensor nodes

are installed randomly and sometimes methodically in the target environment to

track the desired state or phenomena such as temperature, humidity, or fire. Each

sensor is designed to observe a particular and specific condition of the target

environment subjected to the sensor function and transmits the monitored

information to the central node (sink) wirelessly and then finally to the main

processing center.

The localization of WSNs is a considerably significant subject because WSNs

applications, which comprise movement tracking, phenomena monitoring, and

geographic routing, require a high level of precise verification of the target nodes’

coordinates. The main job of localization algorithms is to add a label of geographic

coordinates to the monitoring data generated from the sensor nodes in the target

area. After that, the processing center handles and responds to the monitoring data

[2].

A substantial number of algorithms have been assumed and invented to localize

unknown sensor nodes in WSNs during the last two decades. These algorithms

exploit and utilize the same idea that the positions’ coordinates of unknown nodes

in the target area could be determined by using the coordinates of anchor (beacon)

nodes. These anchor nodes can obtain their positions using Global Position System

(GPS) or manual pre-location in the target area [2]. The other sensor nodes installed

in the target WSN area and do not have a function to get information about their

positions are defined as unknown nodes (or non-anchor nodes). As a result of

GPS’s technical characteristics, such as its hardware’s exorbitant cost and low

precision in the non-line-of-sight application area, the performance of GPS may

not be appropriate for the localization process of these unknown nodes [3].

Therefore, it was requisite for researchers to innovate and develop new ideas and

algorithms for the localization process.

The scientific literature has a considerable number of localization algorithms.

The researchers classified these algorithms into different categories, for example,

 Localization algorithms that differ in their dependence on anchors.

 Localization algorithms that differ in the way to calculate the position

[4].

The first category is classified into anchor-based and anchor-free categories. In

anchor-based algorithms, the sensor anchor nodes get information about their

position coordinates using geographic location techniques such as GPS or

traditional methods during the development of WSNs. Then trilateration approach

is applied to the positions of anchors to calculate the locations coordinates of

unknown nodes. On the other hand, in anchor free category, calculations utilized

communication data transferred from unknown nodes to anchor nodes to estimate

the positions of unknown nodes. The calculation result of this category presents the

relative position coordinates of unknown nodes. Therefore, the anchor-based

category is the best choice among these two categories to obtain high localization

precision [5].

The second category is classified into a distributed category and a centralized

category. In distributed category, the suggested localization algorithm is

implemented internally by the unknown nodes to estimate their positions. This
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category has a disadvantage of the speed power consumption of the batteries of

unknown sensor nodes. While in the centralized category, the main processing

center processes and applies the localization algorithm to all gathered information

to determine the coordinates of unknown nodes, thereby reducing the energy

consumption of sensor node batteries. Hence, the centralized category has more

advantages of saving power than the distributed category, therefore, it is the best

choice when deploying nodes in harsh environments [6].

However, to implement a localization algorithm to achieve high accuracy, it is

required to take into consideration some sensitive and significant points, such as

the anchors’ number required for localization and battery energy consumption. It

is well known that localization algorithms implemented with a considerable

number of anchors achieve high localization accuracy, which increases the running

expense and energy consumption of WSNs. During the last few years, researchers

have tended to replace traditional localization approaches, such as angulation and

trilateration, with modern optimization techniques for the purpose to improve and

achieve high position estimation accuracy.

During the last decade, researchers have invented and suggested several

optimization techniques characterized by high degree of performance to enhance

the precision of measurements calculated by the function of RSSI. These

optimization techniques have proven their efficiency in enhancing the accuracy of

localization based on RSSI. In the science literature, one of the highly qualified

methods of optimization techniques is Meta-heuristics methods. Meta-heuristic is

a global search method that is able to produce high-quality solutions for a specific

problem within a reasonable time. These techniques belong to two categories.

Methods relied on population solutions such as Differential Evolution (DE),

Particle Swarm Optimization (PSO) and its variants [2], Pattern Search (PS), Local

Unimodal Sampling (LUS), Ant Colony (ACO) [4], [7], Nelder Mead simplicial

heuristic [8] and Intelligent Water Drops (IWD) [9] and Genetic Algorithm (GA)

[10]. The other category of techniques relied on a single solution such as Variable

Neighborhood Search (VNS) [11], Iterated Local Search (ILS) [12], Simulated

Annealing (SA) [13], and Tabu Search (TS) [14].

In the literature, researchers suggested improving the performance of these

optimization techniques by combining both categories to produce hybrid

techniques. These hybrid techniques could gather the mother methods’ best

advantages, such as accelerating the search for the ideal solutions for the target

problem and overcoming premature convergence. These ideas comprise a particle

swarm optimization with local search (PSOLS) [15], differential evolution with

local search (DE-LS) [16], a hybrid genetic algorithm with local search (GA-LS)

[17], and evolutionary programming with local search (EP-LS) [18].

This work utilized a range-based centralized category to enhance localization

accuracy for WSNs deployed in an outdoor environment. Figure 1 presents an

illustration of the proposed scenario. This paper assumed to utilize an RSSI-based

ranging technique to obtain the interior distance between anchor nodes and

unknown nodes. The processing unit applies the proposed optimization techniques

to the estimated information to get the position coordinates of the unknown nodes.

This paper suggested a hybrid of modern and highly qualified meta-heuristic

optimization techniques, namely Intelligent Water Drops (IWD) and simulated

annealing (SA), to intensify the precision of the final calculation for the position of

unknown nodes. This hybrid algorithm is called Intelligent Water Drops with a

Simulated Annealing for localization improvement in wireless sensor networks; in

short, IWDSA. Indeed, IWD is a population-based optimization technique that is
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very simple and highly qualified. IWD uses a constructive manner to derive an

optimal solution for a target problem [18], [19], [20].

Figure 1 The Proposed Scenario

The SA technique has been utilized in the literature to derive a solution for

several optimization problems; the results were fairly good in most cases [21]. SA

is selected in this paper for its characteristics, such as high objective values, and its

ability to escape from the current solution to the next better solutions. Therefore,

IWD and SA characteristics can be considered the essential motivation for utilizing

the proposed hybrid algorithm IWDSA to enhance localization accuracy. To date,

it is the first time to use a hybrid algorithm between IWD and SA to improve

localization accuracy in WSN.

This paper intends to achieve the following technical contributions:

 Take advantage of the ability of optimization techniques to build a

highly qualified localization algorithm.

 Design, implement and evaluate a hybrid algorithm of Intelligent

Water Drops (IWD) and simulated annealing to enhance the estimation

accuracy of localization in WSN.

 Build a typical localization model utilizing the proposed hybrid

algorithm IWDSA and compare its efficiency with other localization

models that suggested optimization techniques for improving

localization accuracy.

This paper is structured in several sections. Section 2 presents a summary of the

related works that have been done on localization algorithms. This section is

followed by a Network Model and Background in Section 3. A description of IWD

and SA is approaching in Section 4. The implementation of the proposed hybrid

algorithm IWDSA is presented in Section 5. Simulation experiments and extensive

discussions of the final results are introduced clearly in Section 6. Section 7 is the

final part of the paper and it presented the concluding remarks and future works of

the study.
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2. Related Works

During the last two decades, researchers published a significant number of

surveys in WSN. These surveys included WSN applications, issues, protocols and

algorithms. These surveys can be found, not limited to, in [10], [22]–[28]. In [29],

the authors utilized ant colony optimization approach with mobile anchor for the

path planning, and they proposed a centroid-weighted localization algorithm for

location estimation of unknown nodes. Evaluation of simulation results

demonstrated an appropriate localization accuracy compared to the traditional

centroid approaches. In [30], the authors took advantage of Genetic Algorithm to

deal with the low positioning accuracy while utilizing minimum anchor nodes. The

experiment results of their proposed algorithm indicate that three beacon (anchor

nodes) were adequate to get an appropriate localization accuracy. The authors in

[31] exploited RSSI-Least Squares Support Vector Regression (RSSI-LSSVR) to

optimize the localization precision and to lower the deployment charge. The

evaluation of their algorithm showed that their method could enhance the

localization precision and lessen the deployment charge with more reliability. In

[32], the authors utilized a new method of graph embedding with polynomial

mapping called (GEPM) for localization in WSN. They used evaluation factors

such as the range, the number of installed anchors, and the noise to evaluate their

method. Generally, the authors proved that GEPM could achieve high localization

accuracy in conditions of small area and low noise. In [33], the authors proposed

an advanced version of DV-Hop algorithm called Hop-correction and energy

efficient DV-Hop (HCEDV-Hop) to improve the localization accuracy. The results

showed that the proposed algorithm outperforms the basic DV-hop in terms of

localization accuracy and energy consumption.

In [34], the authors utilized a technique called Particle Swarm Optimization

(PSO) to enhance localization accuracy at outdoor WSN application. They

evaluated their proposed algorithm that utilized PSO with other algorithms utilized

simulated annealing approach, proving their algorithm produces higher localization

accuracy. In [35], the authors optimized the performance of the DV-Hop algorithm

by utilizing PSO technique. The evaluation results proved that the improved DV-

Hop algorithm with PSO technique presented a high localization coverage rate

compared to the traditional DV-Hop approach. In [36], the authors developed their

localization algorithm accommodating the advantages of the basic PSO version

with RSSI to optimize localization accuracy. They developed their algorithm in the

same way as the DV-distance algorithm to improve localization success ratios. The

evaluation of the proposed algorithm depicted that it is capable of optimizing the

localization accuracy and produce high access ratio of the nodes. In [37], the

authors built their localization algorithm by combining two optimization

techniques, namely fuzzy logic and an extreme Learning machine (FELM) with a

vector particle swarm optimization (HVP), and they called their algorithm

HVP_FELM. Their study was limited by the average localization error and its

relationship with the anchor’s density and the communication range. The best result

of localization accuracy is about 1.5m. This study ignored the noise effect on

localization accuracy. In [38], the authors utilized an upgraded version of PSO

called Cooperative Distributed Particle Swarm Optimization (CDPSO) for the

localization process in WSN. The authors proved that the efficiency of CDPSO

outperformed other basic algorithms considering the result of localization

accuracy. The authors confined localization error and complexity for the evaluation

and ignored other influencing factors including the noise of the environment and

the anchors’ number. The work in [39] relied on a modified version of the bat

algorithm called MBA to improve the original version’s localization performance.



Int. J. Appl. Inf. Technol. Vol. 08 No. 01 (2024) 19

The authors concluded that the proposed algorithm outperformed the original

algorithm in several aspects, such as localization rate and speed convergence.

However, they found that the localization accuracy is lower than the original

version. In the science literature, several studies considered and took advantages of

optimization techniques for the localization process. These studies can be found in

works such as [1], and [40]–[44].

This paper developed a hybrid localization algorithm that combines modern and

highly qualified optimization techniques, namely Intelligent Water Drops (IWD)

and simulated annealing (SA), called IWDSA. The evaluation of simulation results

proved the high performance of IWDSA to optimize localization accuracy. The

high performance of IWDSA seemed obvious in several evaluation factors,

including localization accuracy, localization rate and localization processing time.

An evaluation comparison was handled between IWDSA and other localization

algorithms, including traditional localization techniques (e.g., HCEDV-Hop and

RSSI-LSSVR) and other localization algorithms that utilized optimization

techniques (e.g., IWD, ACO, MPA, and HSPPSO). The simulation experiment

considered several parameters for implementation, including the number of

anchors (N), noise which is represented by standard deviation (σ), communication

range and complexity which is represented localization time.

3. Network Model and Localization Background

3.1. Network Model

This paper suggested a WSN comprises a group of sensor nodes (unknown

nodes) and beacon (anchor) nodes deployed in an outdoor target area. This work

assumed to install the sensor nodes in a random way in the target area where these

nodes have a function to receive signals from anchor nodes. The anchor nodes have

predefined fixed locations, and their fundamental responsibility is to broadcast

anchor signals which will be received and treated by sensor nodes for the

localization process. The sensor nodes release the received anchor signals after

extracting RSSI information.

This model assumed the following conditions.

 The network covers the target area and cannot change after

deployment. This network comprises a considerable quantity of sensor

nodes deployed in random approach in a two-dimensional geographic

space in the target area. After deployment, these nodes could not move

or change their position.

 The network has one primary node deployed at a fixed position outside

the border of the target area and has a way of directly connection to

the processing unit.

 The network has N static beacon (anchor) nodes and M unknown

nodes. The anchors have a function to determine their positions by

GPS or by manual pre-programming during installation.

 The suggested mode of radio propagation is not completely spherical,

and RSS has a random variation. The random variation of RSS is

formulated as a Gaussian distributed random variable (in dB) with zero

mean and σ standard deviation in (dB).

This paper suggested a common type of nodes communication: nodes can

discover and connect with other nodes in the network if the inter-distance measured

between them is smaller than the communication range r.
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3.2. Stages of Localization System

There are four distinct stages in the localization system as drawn in Figure 2.

Figure 2 Stages of Localization System

1. The internal distances measurement stage: In this stage, there are

several techniques of ranging utilized to calculate the inter-distances

between anchors and unknown nodes. Generally, these techniques

include several techniques, such as those utilized angle of arrival

(AOA) technique, received signal strength (RSS) technique, and time-

based techniques like time of arrival (TOA), time difference of arrival

(TDOA) or round trip time (RTT). Then, any suggested Radio

propagation model will treat the signal measurement resulting from

ranging techniques to calculate the final inter-space between WSN

nodes.

2. The position calculation stage: In this stage, traditional techniques

such as multilateration /angulations or modern techniques process the

previous stage measurements to determine the initial positions

coordinates of unknown nodes installed in WSNs.

3. Localization algorithm applying stage: This is the fundamental stage

in the localization process. This stage explains how the information

from the previous two stages can be handled and exploited to improve

the position accuracy of unknown nodes by utilizing the proposed
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hybrid algorithm that combines Intelligent Water Drops (IWD) and

simulated annealing.

4. The performance evaluation stage: This is the final stage in the

localization system, where several evaluation metrics compromised

localization error and final localization rate are utilized to evaluate the

localization results.

3.3. Radio Propagation Models

In the scientific literature, propagation models refer to the methods that study

and predict the average strength of the received signal at a specific point from the

transmitter. They also refer to the means that study the signal strength variability

in a specific location [2]. In the scientific literature, several studies have supposed

several models of propagation for different environments, either outdoor or indoor

[4] and [45]. Generally, RSSI-based techniques utilize a common propagation

model called Lognormal shadowing model (LNSM). LNSM is characterized as a

simple model and has a fair achievement in formulating the relationship between

the measured distance and the degree of signal attenuation. LNSM formulate the

relationship between RSSI and distance as in Equation 1.

� � � � � ( � � � ) = � � � � � � ( � � � ) − � � � � � �
�

� �
+ � � Equation 1

Where

 RSSId : It indicates the power of the signal received by the antenna of

sensor node (unknown node) from the surrounding anchors.

 RSSId0: It indicates the power of the signal received by the antenna of

sensor node (unknown node) at reference distance d0 from an anchor

node, often 1m. Some factories of WSN devices refer to the RSSId0

value in the product datasheet, for example (-45 dBm) [46].

 d: refers to the distance between anchor node and the studied unknown

node.

 (10n log d/d0): It indicates the Pathloss.

 n: It refers to the Path Loss exponent. It has an STD value that ranges

from 2 to 6.5 and is to be determined based on the propagation media

of the signal or surrounding environment (see Table 1) of the WSNs.

 Xσ: It refers to the shadowing factor or by other meaning, it express

the random variation in RSS. Scientifically, it can be defined as a

Gaussian distributed random variable (in dB) with zero mean and σ

standard deviation (in dB).

Table 1 Path Loss Exponent Rang

Environment n

Urban macro cells 3.7 - 6.5

Urban micro cells 2.7 - 3.5

Office building (same floor) 1.6 - 3.5

Office building (multiple floors) 2 - 6

Store 1.8 - 2.2

Factory 1.6 - 3.3

Home 3

Then the distance (d) from any anchor node to the studied unknown node is

calculated as in Equation 2.
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� = � �
� � � � � � � � � � � � � � �

� � � Equation 2

Practically, the position of the studied unknown node could be calculated after

determining the distances to three anchors at least. The distance to any anchor is

calculated by Equation 2. Then, the coordinate of the studied unknown node could

be obtained by applying trilateration. Generally, there will be measurement errors

for any models of ranging technique. These errors often result from noise during

range estimations and adversely affect the localization accuracy in the position

estimation stage. To overcome the errors resulting from geometric approaches

(trilateration), the researchers developed other approaches to estimate the position

of the unknown nodes, such as optimization techniques that could minimize

measurement errors.

As previously explained in the introduction, the purpose of localization

algorithms is to determine the locations of unknown nodes by processing the

location information of anchor nodes. The localization process can be expressed as

an optimization problem that requires finding the best solution by developing an

objective function.

This paper formulated the objective function, which will guide the solution of

the optimization problem by taking advantage of the circular positioning algorithm.

This algorithm aims to extract the (x, y) position of the unknown node that reduces

the sum of squared errors of the estimated distances set. Assume that (Xi, Yi) is the

position of anchor node i, (i = 1, 2. . . N), where (N is the number of anchor nodes)

and (di) is the distances between anchor nodes and the studied unknown node

calculated by the suggested model of ranging, LNSM, then the squared error in the

set of the calculated distances (Equation 3).

� =
�

�
� � � ( � � − � ) � + ( � � − � ) � − � � �

�
�

� � �

Equation 3

This paper assumes to utilize Equation 3 as the fitness function of the objective

function f (x, y) (Equation 4).

� ( � , � ) =
�

�
� � � ( � � − � ) � + ( � � − � ) � − � � �

�
�

� � �

Equation 4

Where

 N ≥ 3 is the number of anchor nodes within the transmission range of

unknown node.

 (Xi, Yi) is the coordinate of ith beacon (anchor) node.

 (x, y) is the coordinate of the studied unknown node.

 di is the determined distance between anchors and the studied unknown

node.

4. Intelligent Water Drops

The idea of Intelligent Water Drops (IWD) was inspired by rivers in nature.

When a massive swarm of water drops are stirring in the natural river, they create

a path the river follows. This river path changes dramatically with time due to water

drops movement. In addition, the natural environment has a direct effect on the

path of the river. These effects have been compiled in an algorithm called

Intelligent Water Drop. Figure 3 shows a river’s natural path where water drops

move without stopping.
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Figure 3 Natural River

It can be observed from Figure 3, that the river paths in nature ordinarily have

a lot of twists and turns. Axiomatically, water drops navigate their way to their

target destination without eyes; the destination is often a lake or sea. The water

drops are driven by a gravitational force that pulls everything in a straight line

toward the earth’s center. Therefore, in the ideal case where the path has no barriers

or obstacles, the swarm of water drops transfer through a straight line toward the

target destination. This straight line is the shortest route that water drops can take

from the source to the destination.

As mentioned, the water drops route is not ideal, so it is not perfectly straight

due to natural obstacles and barriers along the whole path. In addition, water drops

constantly try to create a new path similar to the ideal one; therefore, the river’s

path continually changes with time.

Water drop velocity in the river is a significant characteristic to study. The IWD

algorithm assumes that each water drop able to carry a specific volume of soil from

one point to another along its movement path. Usually, water drops load the soil

from fast to slow parts of the path. As a result, the fast part becomes deeper because

water drops already transferred a significant amounts of soil; therefore, the fast part

attracts more water drops. As long as its movement path, water drops unloaded the

carried soil in the river’s slower beds. Typically, during movement from the river

source to the target destination, water drops prioritize the easier path when several

branches with various difficulties exist. The degree of difficulty of any path can be

selected by the volume of the accumulated soil on that path. Therefore, as long as

the volume of the accumulated soil in that path is less, it will be considered an easy

path; conversely, as long as the volume of the accumulated soil in that path is more,

it will be regarded as a hard path.

IWD algorithm was developed by Shah-Hosseini in 2007. He explained several

remarkable characteristics of a water drop that transfer in the natural rivers. Two

significant characteristics characterize this Intelligent Water Drop [47]:

1. The existing volume of soil transferred by IWD, shortly (Soil IWD).

2. The existing velocity of IWD, shortly (Velocity IWD).

The IWD algorithm assumes that the amount of (Soil IWD) and the value of

(Velocity IWD) for each water drops vary while they move in the surrounding
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environment. IWD algorithm considered the surrounding environment of water

drops as the problem that required solving. Generally, the IWD drops can transfer

in several paths, starting from a specific source and reaching a target destination in

the surrounding environment. Each path can be considered a unique solution. In

most cases, the target destination is unknown. In the case that the target destination

is well known, the shortest route starting from the origin to reach the target

destination is considered the solution. However, in the other cases where the target

destination is unspecific, the solution is extracted by searching for an optimum

target destination by applying several terms of measurement to the given problem.

In the beginning, the developer of IWD algorithm used it to find the best

solution of the Travelling Salesman Problem (TSP) [47]. Then, successively IWD

algorithm was used to solve several problems, such as n-queen puzzle [9], the

Multidimensional Knapsack Problem (MKP) [48], and Robot Path Planning [49].

Generally, Intelligent Water Drop algorithm is considered the appropriate method

to deal with optimization problems. This paper suggested utilizing an improved

variation of IWD named (IWD for continuous optimization), shortly IWD-CO, to

solve the continuous optimization problem. In this case, the solution requires

several continuous parameters that can minimize or maximize the objective

function. The continuous variables are expressed as binary strings in the IWD-CO

algorithm. Also, the target problem is defined as a binary representation. Finally,

the best solution among the optimized solutions generated by IWD-CO is selected

as the final solution.

This paper planned to utilize the version of IWD-CO to enhance the localization

accuracy in WSNs by hybridizing it with simulated annealing. Equation 4 is

considered the objective function, which will be a guide to solve the optimization

problem and find the best solution in the searching space.

5. IWD for Optimizing Continuous Problem

This part of paper demonstrates the steps that IWD-CO follows to enhance the

solution of a target problem or for the objective function. The solution generated

by IWD-CO is designed based on a theory graph, which represents a distributed

memory for IWD-CO for processing data. The implementation steps of IWD-CO

are clarified in the subsequent subsections.

5.1. Problem Illustration

Suppose that f(X): RM is the function required to be minimized or maximized by

IWD-CO. f(X) : RM has N elements Z = [z1, z2, ...zN]
T

, where these elements are the

input of IWC-CO. A graph is built with N nodes, hence there will be 2(N ∗ P)

directed edges. The IWD-CO utilizes this graph to generate solutions for the target

objective function of the problem. The allowed scope of each element is divided

by a precision factor equal to P. Assume that the search space has a range of

component (i) from minimum (i) to maximum (i), where each following node (P)

in the graph is represented by P bits in the shape of a binary string. This paper

planned to evaluate a value of P equal to two. Initially, this paper proposed that the

edges linking the graph nodes carry the same volume of soil. The journey of every

water drop takes a path starting from node one and ending at the last node. In the

graph, there are two directed edges edi,i+1(k) linking between node (i) and

the next node i + 1. k is a one-bit with zero or one value, each value of k represents

one directed graph-edge to the node.
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5.2. Edge Determination

Assume that a water drop launches its trip from node with number (i) and

crosses the edgei,i+1(k) to reach the next node with number (i + 1). The probability

Priwd(edi,i+1(k)) for choosing an edge in the graph is calculated Equation 5 to

Equation 7.

� � � � � � � � � ,� � � ( � ) � =
� ( � � � � ( � � � , � � � (� )))

∑ � ( � � � � ( � � � ,� � � ( � )))�
� � �

, Equation 5

where

� ( � � � � � � � � ,� � � ( � )� =
1

0.0001 + � ( � � � � � � � � ,� � � ( � ) �
, Equation 6

and

� ( � � � � � � � � ,� � � ( � ) �

= �
� � � � � � � � ,� � � ( � ) � � � � � � � � � .� � � � � � � � � � ,� � � ( � ) � � ≥ 0,

� � � � � � � � , � � � ( � ) � − � � � � � � .� � � � � � � � � � ,� � � ( � ) � � � � � � .

Equation 7

Along its journey path and the different operation of replacing nodes with others

and choosing the next edges, the water drop updates its carried soil and transfers

soil from the current choosing edge. The local soil updating process is

demonstrated in the following subsection.

5.3. Local Soil Updating

Assume that a water drop is transferred from node number (i) to the next node

number (i + 1) by crossing edge yi,i+1(k). Sequentially the suggested algorithm

updates the volume of soil (soiliwd) that IWD water drop carried out, and the volume

of soil replacing from the selected edge between the neighboring nodes,

soil(edi,i+1(k)) (Equation 8 and Equation 9).

� � � � � � � � ,� � � ( � ) � = 1.1 ∗ � � � � � � � � ,� � � (� ) � − 0.01

∗ ∆ � � � � � � � � ,� � � (� ) � , � � � � � � �

= � � � � � � �

+ ∆ � � � � � � � � ,� � � ( � )� .

Equation 8

Where

∆ � � � � � � � � ,� � � ( � ) � = 0.001 Equation 9

As a result, IWD, which selects an edge with a small amount of soil, acquires

more speed than IWD, which chooses an edge with a large amount of soil. The

IWD creates solutions by completing their journey to the node in the end of the

problem graph. Then these solutions are utilized by a local search algorithm.

5.4. Mutation-Based Local Search Stage

The solutions generated by the IWD in the previous stage undergo a mutation

operation. Initially, a mutation process starts by randomly electing any edge

edi,i+1(k) from the graph. The selected edge is changed by any neighbor edge that

connects the same nodes i and i + 1 in case replacement improves the selected

solution’s fitness value. The replacement process is repeated over a fixed period.

As mentioned, all the generated solutions by the IWD in the current iteration
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undergo this stage of mutation-based local search. In the final stage of the mutation

process, the edges that represent the best solution are selected and they will undergo

the process of global soil updating. The following subsection demonstrates that.

5.5. Global Soil Updating

The best generated solution TB from the mutation stage will undergo Global soil

updating. The best solution TB is extracted from among the solutions generated by

IWD in the final iteration. This solution is characterized by the best value of

(fitness) among all the solutions developed by IWD. In this stage, the soil’s volume

of graph-edges shaping the best generated solution TB undergoes an update as

follows (Equation 10 and Equation 11).

� � � � � � � � ,� � � ( � )�

= � � � � � � � � � � � � � � � � � � � � ,� � � ( � )� , � � � � � � � � , � � � � � � � � ∀ � � � ,� � � ( � )

∈ � � ,

Equation 10

where,

� � � � � � � � � � � � ,� � � ( � ) �

= 1.1 ∗ � � � � � � � � , � � � ( � ) � − 0.01

∗
� � � � �

� � �

( � ∗ � )
, ∀ � � � ,� � � ( � ) ∈ � � ,

Equation 11

MinSoil and MaxSoil are the upper and lower limits for the amount of soil that

the global soil updating relies on to stop unacceptable use of the edges. The

simulation experiment sets these boundaries as MinSoil = 2000 and MaxSoil =

10000. N represent the function components number, whereas P is the precision

factor. The term � � � � �
� � � is the volume of soil accumulated by the IWD-best

generated solution from the graph-edges during the journey in the graph. Briefly,

� � � � �
� � � represents the fitness cost of the best generated solution within the current

iteration group, TB. After the current iteration of the process of global soil updating,

a process with new iteration will start with a new IWD group. The updating is

repeated with new IWD until the implementation reached the final number of

iterations.

6. Simulated Annealing

Since Simulated Annealing was innovated and utilized as a solving method for

optimization problems, it has been used to improve the solutions for a considerable

number of algorithms. SA has been utilized either as an original version with its

essential functions or as a hybrid algorithm with other metaheuristics methods. SA

technique proved its ability to introduce good application results compared to other

local search metaheuristics techniques [50][51]. The scientific literature has

excellent reviews and studies about SA and its application to solve optimization

problems [52].

The main goal of combining SA with IWD is to improve the quality of the final

solutions generated by the IWD. Another fundamental goal in suggesting the

hybrid algorithm between these two techniques is to build a robust local search

method that assists IWD algorithm to overcome trapping into local minima. SA is

considered an intelligent search method that can pass from the current solution to

another among the neighborhood solutions. Therefore, SA has the advantage of

producing objective values that support IWD to solve the localization problem

efficiently. SA has more advantages than the hill climbing method, where it has the
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potential to crossover local minima trapping by selecting worse moves (low

quality) or uphill steps randomly in some time. SA follows a specific movement

procedure to choose the best solution, so if the expected move could produce a

solution better than its current position solution, then SA will follow that

movement. If the expected move creates a worse solution, SA could accept that

movement based on specific probability selection criteria.

For the localization process, the SA starts its procedure by evaluating the

construction of the best IWD solutions, represented by � �
� � � (i = 1, 2... n), for a set

of specific elements with updated solutions � �
� � � +1 generated by switching the

orders of two elements randomly. The cost of fitness function represents the quality

of solution � �
� � � , and it is indicated by f(� �

� � � ). The difference in cost △f between

the original solution � �
� � � and the updated solution � �

� � � +1 is denoted by Equation

12.

∆� = � � � � � �
� � � � − � � � �

� � � � Equation 12

The cost of fitness functions is calculated repeatedly; hence, the average

evaluation of the function costs presents a good indication of the quality of the

generated solutions. In some specific cases, it should consider following a simple

evaluation of the fitness functions to reduce the implementation time of SA.

SA starts the optimization process with the initial solution generated by

IWDCO. The new solution is only accepted if its fitness cost is smaller than the

previous solution. More clearly, the new solution is accepted when its fitness cost

achieves the following (Equation 13):

� � � � � �
� � � � < � � � �

� � � � Equation 13

However, in some cases, SA algorithm to accept or reject any new solution f

( � �
� � �

+1 ) which has a higher fitness cost is based on the following acceptance

criteria probability (Equation 14):

� (� , � � ) = exp (−
� � � � � �

� � � � � � � � �
� � � �

� � �
) Equation 14

To enhance the efficiency of SA, Eq 14 will be replaced by the following

equation in the case the size of the target problem is large (Equation 15):

� (� , � � ) = exp (−
� � � � � �

� � � � � � � � �
� � � �

� �
) Equation 15

In the purpose of lessening the implementation time of the SA procedure, an

approximation process is applied on Equation 16.

� (� , � � ) = (1 −
� � � � � �

� � � � � � � � �
� � � �

� �
) Equation 16

tτ denotes the temperature factor at the τth iteration during the evaluation process

of the new solution by applying Eq 15 or Eq 16. Hence, the new solution’s

acceptance probability relates to the temperature tτ and the difference in the fitness

cost between the previous solution and the new solution. Several researchers

approved that the acceptance probability of any new solution, that is worse than the

previous solution, declines as the temperature tτ decreases. Briefly, only the best
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solutions are accepted when the temperature tτ deteriorates to zero. This paper

adopted the following cooling formula (Equation 17).

� � + 1 = � � � Equation 17

Where α represents the deteriorate rate of the temperature tτ at each time SA

discovers a new solution.

7. The Proposed Hybrid Algorithm

The proposed hybrid algorithm IWDSA utilizes the SA acceptance probability

criteria to compare the cost of fitness function between the current and the new

solution, then selects one for the updating process. The proposed algorithm

performs this process by computing the fitness function of the solutions generated

by the old and new IWD drops and comparing their quality. Generally, the

generated solutions’ quality revolves around TM and TB. The proposed algorithm

follows several factors to evaluate the acceptance method of the solutions. These

factors mainly include the fitness function (solution quality) and the working

temperature tτ . The main advantage of acceptance criteria is to give an ability for

the IWD algorithm to escape from the trap in local minima; hence that leads to

increasing the rate of both exploration and convergence of the algorithm.

7.1. Implementation Steps of the IWDSA

The implementation method of the proposed algorithm IWDSA for the process

of localization in the target WSNs follows the pseudo code shown in Algorithm 1.

Each unknown node in the target network is undergoing the implementation of the

subsequent steps:

Step 1: The majority of metaheuristic optimization techniques initiate the

implementation process with an initial solution. Hence, in the beginning of the

localization process, the deployed unknown nodes have to extract the initial

estimated position. Therefore, in this paper, the centroid of the anchor nodes

located under the unknown node coverage range is considered a perfect initial

calculated position. Step 1 is demonstrated as follows (Equation 18).

� � � � � =
1

�
� � � , � � � � � =

1

�
� � � ,

�

� � �

�

� � �

Equation 18

where

 (Xinit, Yinit) is the initial position of ith unknown deployed node.

 (Xi, Yi) is the position coordinate of ith beacon (anchor) node.

 N denotes the density of anchors located under the coverage area of

unknown deployed node in the target WSNs.

Step 2: The positions of the N components, Z = [z1, z2, ..., zN]T , which represent

the objective function f(x, y), are assigned randomly throughout the polar

coordinates system. The initial position obtained from step 1 (Equation 12) is

selected as the origin point in the graph.

Step 3: In this step, the algorithm divides the search space assigned to each

component, Zi, into P different positions with coordinate (x, y) where each position

denotes a single node in the target graph, and also represents initial generated

position of the unknown deployed node which will undergo evaluation by using
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Equation 4. Hence, the problem’s graph has number of nodes equal to (N ∗P) and

2∗N ∗P number of edges, where each node has a connection to the neighbor nodes

by two edges. The proposed algorithm assigned the same amount of soil for all

edges forming the graph; this amount is equal to 5000.

Step 4: IWDSA starts the implementation cycle by distributing all water drops

randomly on the graph nodes.

Step 5: Every water drop determines the next graph edge i,i+1(k), which is a link

connected node with number (i) and node with number (i + 1) based on Equations

5, 6 & 7.

Step 6: During the implementation, the soil volume carried by IWD (soiliwd),

and the soil accumulated in the selected edge, soil(edi,i+1(k)), are updating by

applying Equations 8 & 9.

Step 7: At this step, the mutation process is applied to all solutions generated

by IWD as nominated in the mutation local search stage. Then, the edges are chosen

depending on the fitness cost of the suggested objective function. Equation 4

represent the objective function.

Step 8: In this step, the best generated solution TB is extracted from all solutions

generated by water drops in Step 6. The best generated solution TB is characterized

by the lowest cost of fitness of the objective function, as shown in Equation 4.

Step 9: SA algorithm starts its process from this step by creating new solution

� � � �
� � � from � �

� � � , where � �
� � � is equal to TB from step 8.

Step 10: The fitness value of both � � � �
� � � and � �

� � � is calculated, and a

comparison between their values is handled to determine the solution TM with the

lowest fitness value.

Step 11: The global soil updating will be applied to the best final solution TM

resulted from the previous step by implementing Equations 10 & 11, and then

updates the global best solution TB based on SA algorithm process.

Step 12: Update working temperature tk+1 = αtk.

Step 13: The proposed algorithm IWDSA repeats steps from Step 4 to Step 12

until the termination condition or the last value of iterations number is

implemented. In the final stage, the best estimated location of the target unknown

sensor node is determined by exploring the nodes which created the best solution

TB. Then, the solution with the lowest value of the objective function is the final

position of the target unknown sensor node, Equation 4.

7.2. IWDSA Pseudo Code

Algorithm 1 depicts the pseudo code of the proposed algorithm IWDSA.

Algorithm 1 Pseudo code of the IWDSA

Require : Unknown nodes deployed in outdoor environment.

Parameters initialization: Determine the position of anchors using GPS, maximum iteration number,

amount of initial soil and update parameters for both soil and velocity.

Output : The estimated position of unknown nodes.

1: ForEach unknown node

2: Calculate the initial estimated position using Eq 12;

3: Initialized the N components of f(x, y) randomly using polar coordinate with the initial in last step as

the origin;

4: Divide search space of each component to P position, thus, totally N ∗ P nodes construct the graph

with 2 ∗ N ∗ P edges;

5: End For

6: ForEach IWD

7: Assign amount of soil to all edges of the graph, e.g., 5000;
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8: End For

9: Repeat until reach termination condition;

10: Distribute IWD randomly on the of graph’s nodes;

11: Start the cycle of IWD-CO;

12: Each node selects appropriate edge to next node by Eq 5, 6, & 7;

13: Update Soiliwd and Soil(edi,i+1(k)), using Eq 8 & 9;

14: Apply the mutation process on the solutions generated by IWD;

15: Extract the best Solution TB which is related to the lowest value of fitness function Eq 4;

16: *******Hybrid with SA start from this point******

17: � �
� � �

is equal to TB from last step;

18: Create a new solution � � � �
� � �

from � �
� � �

.

19: Calculate the fitness functions f(� � � �
� � �

) and f(� �
� � �

).

20: If f(� �
� � �

) ≤ f(� �
� � �

) Then

21: � �
� � �

= � � � �
� � � ;

22: Else

23: Calculate p(f, tτ ) with Eq 14 or Eq 15;

24: If p ≥  r(0, 1) Then ; r is random number

25: : � �
� � �

= � � � �
� � �

26: END IF

27: TM = � �
� � �

, TM is the current best solution.

28: Apply soil updating on the best current solution using Eq 10 & 11 and update the Global best

solution TB as follow

29: If f(TB) ≥  f(TM ) Then

30: TB = TM

31: Else

32: TB = TM

33: End IF

34: Update working temperature tk+1 = αtk

35: End Repeat

36: Extracted the position from the graph’s nodes that represented the best generated solution TB;

37: The final position of the studied node is the graph’s node has the lowest cost of the suggested

objective function;

8. Simulation Experiment and Performance Analysis

The performance of the proposed algorithm IWDSA was analyzed by launching

Simulation experiments. These experiments were carried out using MatlabTM16.

The simulation experiments were handled with a wireless sensor network

comprising a specific number of unknown sensor nodes and a fixed number of

anchor nodes. The target WSN was installed outdoors with dimensions 20m ∗ 20m.

The unknown wireless sensor nodes were deployed randomly in the target WSN.

In contrast, the beacon (anchor) nodes took fixed places in the simulation area.

An evaluation comparison was handled between IWDSA and other localization

algorithms, including algorithms that used traditional localization techniques (e.g.,

HCEDV-Hop and RSSI-LSSVR) and other algorithms of localization that utilized

optimization approaches (e.g., IWD, ACO, MPA, and HSPPSO). The simulation

experiment considered several influencing factors for implementation, including

the number of anchors (N), communication range and noise that expressed by

standard deviation (σ). Table 2 lists the setting of parameters values for the

simulation experiment.

Table 2 Simulation Experiment Parameters.
Parameter value

Network size 20 ∗ 20 (m)

Number of nodes 100
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Parameter value
Percentage of anchor nodes 5% to 20 %

Transmission range r = 5 - 20m

Path loss exponent n 2

Noise σ 0.1 - 1.5

8.1. Simulation Environment

To carry out the simulation, we developed a MATLAB-based program, as

previously mentioned. This program is characterized by a user interface that

facilitates the input of settings and parameters. The user interface depicts the results

as illustrated in Figure 4.

Figure 4 Simulation Interface

where:

 Part 1: select the localization algorithm.

 Part 2: determine the number of sensor nodes and anchors, and to select

the way of deployment and set up the value of the influencing factors

such as standard deviation, communication range, set up IWD

parameters and set up SA parameters.

 Part 3 to show the simulation results including the localization error

and implementation time.

The simulation program is executed through the subsequent steps.

1. Determine the initial settings included (the number of anchors, sensor

nodes, and the value of standard deviation, number of IWD,

parameters of simulated annealing).

2. Deploy the sensor nodes and anchors in the simulation area (assign the

coordinates).

3. Estimate the distances between anchors and sensor nodes by utilizing

the formula of RSSI.

4. The position estimation of sensor nodes by applying multilateration.
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5. Executing the proposed hybrid algorithm IWDSA on the positions

estimated in the previous step for optimization purposes by following

the outlined pseudo code to identify the best solution.

6. Calculate the localization error and implantation time and show them

in the user interface as depict in Figure 5.

7. Repeat the previous steps with different parameter values and settings.

8. Organize the final outcomes within appropriate tables and

subsequently present them through a corresponding figure.

Figure 5 Interface with Result

8.2. Metrics of Performance Evaluation

This paper utilized several factors to rate the performance of the assumed

algorithm IWDSA and measure its ability to enhance localization error. The

evaluation studies the effect of the density of anchors, communication or

transmission range, and noise represented by standard deviation on the algorithm

performance. This paper utilized three metrics to evaluate the performance of

IWDSA, namely localization error (represents the localization accuracy),

localization success and complexity.

Localization error (LE): is the Mean Square Error (MSE) of the proportional

between the generated position by IWDSA and the actual position of the unknown

wireless sensor node, as shown in Equation 19.

� � =
1

�
� � � � � � � � − � � � � � � �

�
+ � � � � � � − � � � � � � �

�
�

� � �

Equation 19

where

 K is the total number of the deployed sensor (unknown) nodes.

 ( � � � � � , � � � � � ) are the generated coordinates of wireless sensor

(unknown) nodes i.

 ( � � � � � � , � � � � � � ) are the actual coordinates of wireless sensor (unknown)

nodes i deployed in the target WSNs.
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Localization success: is expressed as the ratio of successfully localized nodes

to the network’s total number of wireless sensor nodes (Equation 20).

� � =
� � � � � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � � � � � �
Equation 20

Complexity: or in other words, the localization time. It can be expressed as the

time spent by the algorithms to conduct the localization processes in the target

WSNs. This metric is considered as essential metric for the performance analysis

among all evaluated algorithms.

8.3. Experiment Results Evaluation

This paper follows a specific methodology to present performance evaluation

of the proposed algorithm by analyzing the experimental results as the following

two stages.

1. Firstly, this paper evaluated the performance of IWD before hybrid

with SA. The evaluation has been carried out, taking into consideration

three affecting parameters. These parameters are the number of water

drops, the precision value (P), and the function’s components (N).

2. Secondly, this paper studied the performance of the suggested hybrid

algorithm, IWDSA, and evaluated the performance at the optimum

point compared to other algorithms’ performance using localization

evaluation metrics.

8.3.1. Localization Error Against the Number of Water Drops

Figure 6 illustrates the direct effect of increasing the density of water drops on

localization accuracy.

Figure 6 Localization Error vs. IWD

The simulation results demonstrate the degradation of the localization error

when the density of IWD is increasing in the problem graph. This degradation of

localization error is a direct result of increasing the number of solutions generated
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by IWD, which in turn leads to increasing the probability of obtaining the best

solution for the objective function. Therefore, as a final result, increasing the

number of IWD improves the localization precision.

Figure 7 Localization Error vs. Number of Components

8.3.2. Localization Error against the Number of Components (N)

The impact of rising the density of the function’s components (N) appears

clearly in Figure 7. It demonstrates that the localization error declines when

increase the density of components (N). This decline in localization error is

attributed to expanding search space that surround the initial solution, which

increases the probability of obtaining the best solution characterized by the smallest

value of fitness function briefly, the localization accuracy presented by IWD

increases while rising the density of components (N). Figure 6 and Figure 7 proved

the same result that expanding the search space that surrounds the initial point will

inevitably enhance the localization accuracy.

8.3.3. Localization Error against Anchor Density

Table 3 and Figure 8 compare the performance and strength of the proposed

algorithm IWDSA with other algorithms. The comparison demonstrates the direct

effect of increasing the density of anchors on the localization errors. The

comparison proved the capability of IWDSA to enhance and improve the

localization accuracy compared to the original IWD and other localization

algorithm.

Table 3 Localization Errors Against The Density of Anchors
Metric Localization Algorithms

Number of Anchors HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

4 2.5 6.145 2.335 2.458 3.7 1.807 1.51

8 2.32 5.5 1.8 1.876 3.105 1.575 1.27

12 2.155 5.3 1.67 1.736 2.855 1.46 0.98
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Metric Localization Algorithms

Number of Anchors HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

16 2.05 4.93 1.59 1.648 2.745 1.418 0.91

20 1.92 4.9 1.32 1.567 2.6 1.379 0.86

Figure 8 Localization Error against Anchor Density

The experiment’s results emphasize the capability of IWDSA to improve

localization accuracy with fewer anchors, which perfectly reduces the cost of

sensor network developments. It is evident from the experiment result that when

the number of anchors distributed in the deployment area is 20, the hybrid

algorithm IWDSA boosts the localization accuracy by 38% compared to the

original IWD (before hybrid with SA). Table 3 gives information of the localization

error against several values of the number of anchors. For example, from the results

in the table, when the value is 8, the localization error resulting from IWDSA is

equal to 1.27 m, whereas, for HCEDV-Hop, RSSI-LSSVR, HSPPSO, ACO, MBA

and IWD, the error value is equal to 2.32 m, 5.5 m, 1.8 m, 1.876 m, 3.105 m and

1.575 m respectively. When the value of the number of anchors is equal to 20, the

value of localization error resulted by IWDSA just with 0.86 m compared to 4.9 m

resulted by RSSI-LSSVR. Eventually, the overall result proved that the proposed

hybrid algorithm IWDSA could achieve and present high localization accuracy

with fewer anchors.

8.3.4. Robustness under the influence of noise

Based on this work’s suggested radio propagation approach, the error of

distance measurement between the deployed sensor nodes is represented as Xσ. 

Gaussian distributed random variable (in dB) characterized by zero mean and

standard deviation σ (in dB). Hence, the standard deviation value could be

considered a perfect metric to evaluate the performance of IWDSA in a noisy

environment.
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Table 4 Localization Error Against Noise.
Metric Localization Algorithms

Noise (σ) HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

1 4.12 5.07 0.8756 1.3 2.77 1.2 0.81

2 4.65 5.441 1.13 1.34 3 1.38 1

3 5.23 5.68 1.285 2.5 3.77 1.56 1.5

4 5.45 6.06 3.02 3.2 4.25 3.56 2.41

The experiment results shown in Figure 9 and Table 4 illustrate the effect of the

noise σ on localization errors. The results demonstrated the slight impact of noise

on the performance and robustness of the proposed hybrid algorithm. Despite the

slight effect, the results showed the robustness and perfect performance of the

hybrid algorithm in the noisy environment; simultaneously, the results proved the

capability of the IWDSA to present a high degree of localization accuracy when

comparing with other algorithms. It can be noted from the results when the noise

value σ equal to 3, the value of localization error results from the hybrid algorithm

is 1.5 m compared to localization error value larger than 3 m resulted by HCEDV-

Hop, RSSI-LSSVR and MBA. Under the exact terms of noise, the localization error

of HSPPOS and IWD are 1.285 m and 1.56 m, respectively. Eventually, the

experiment results proved the robustness of the proposed hybrid algorithm IWDSA

under harsh noise conditions.

Figure 9 Localization Error against Noise

8.3.5. Localization rate against anchor density

This section outlines how the anchor density has an influence on the localization

rate. Figure 10 and Table 5 introduce a comparison among the hybrid algorithm

IWDSA and other studied algorithms. Experiment results assured and revealed an

improvement in the localization rate by IWDSA while increasing the density of

anchors for all studied algorithms.
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Table 5 Localization Rate Against Anchor Density.
Metric Localization Algorithms

Anchors density HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

4 0.104 0.095 0.145 0.128 0.099 0.135 0.155

8 0.168 0.15 0.195 0.1875 0.125 0.19 0.255

12 0.3214 0.3451 0.3928 0.3571 0.3571 0.3214 0.5653

16 0.6667 0.355 0.7083 0.625 0.425 0.6667 0.8569

20 0.72 0.58 1 0.78 0.69 0.82 1

The results revealed that the hybrid localization algorithm obtained the highest

localization rate. In addition, the results disclosed that IWDSA requires less

numbers of anchors to achieve the localization process; hence, IWDSA can save

the deployment cost.

Finally, the experiment result proved that the proposed algorithm was able to

achieve 100% localization rate with just twenty anchors.

Figure 10 Localization Rate Against Anchor Density

8.3.6. Localization time against anchor density.

Table 6 and Figure 11 explain the direct influence of the anchors’ density on

the time required for localization process. They address a comparison among the

hybrid algorithm IWDSA and other studied algorithms. The localization time was

selected as a fair metric to determine the complexity associated with each algorithm

while executing. The results demonstrated that the required time for the process of

localization declines while increasing the number of anchors. The time decreases

because the trilateration process takes a shorter time due to the availability of the

required number of anchors. Eventually, the hybrid algorithm IWDSA presented a

perfect efficiency compared to the other models.
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Table 6 Localization time against anchor density
Metric Localization Algorithms

Anchors density HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

4 65.6 91.0 47.9 47.8 81.9 55.3 45.6

8 64.5 76.6 42.0 36.2 68.7 54.6 35.4

12 45.8 64.8 25.0 35.1 60.0 42.9 15.9

16 39.1 49.9 20.0 29.7 42.0 31.1 14.6

20 33.8 49.5 17.5 24.7 41.8 30.5 9.1

A computer featuring i7 processor and 12 Gigabytes of memory was used to

handle the simulation experiment. The results in Table 6 demonstrated the required

time to localize all sensor nodes deployed in the simulation area. It is evident that

the suggested hybrid algorithm IWDSA reached the best-estimated positions of

sensor nodes in short time compared to other algorithms. This convergence to the

best position appears clearly when the number of anchors exceeds twelve.

Implementing the localization process in a short time prolongs the sensor nodes’

battery life and thus reduces the final cost of WSN. Eventually, the results proved

that a hybrid between IWD algorithm and SA algorithm contributes to overcoming

the time problem that may occur when utilizing IWD algorithm alone.

Figure 11 Localization Time Against Anchor Density

8.3.7. Localization Error Against Transmission Range

Sensor nodes’ transmission/ coverage range has a direct and positive

relationship with the transmission power. Empirically, it has been proven that the

wider the transmission range, the more accurate localization for any algorithm. This

enhancement in localization accuracy is attributed to the increase in the number of

the neighbor anchors located under the coverage area of the sensor node, which in

return contributes to reducing the calculation error when estimating the position of

the sensor node.
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Table 7 Localization Errors Against Transmission Range
Metric Localization Algorithms

Transmission range HCEDV-Hop RSSI-LSSVR HSPPSO ACO MBA IWD IWDSA

10 2.3 5.12 2.12 2.4 2.36 2.2 1.48

15 1.95 4.8 1.64 1.86 2.23 1.67 1.302

20 1.83 4.52 1.13 1.36 1.96 1.17 1.101

25 1.632 3.86 1.01 1.16 1.75 0.92 0.8569

30 1.62 3.35 0.92 1.2 1.26 1 0.65

The experiment results proved the efficiency of the proposed hybrid algorithm,

as shown in Figure 12 and Table 7. The results demonstrated the localization error

with different transmission ranges; for example, when the transmission range equal

to 30 m, the error of localization resulting from the hybrid algorithm IWDSA is

just 0.65 m compared to 1 m resulting from IWD without hybrid. In addition, the

localization error is 1.62 m, 3.35 m, 0.92 m, 1.2 m, and 1.26 m for HCEDV-Hop,

RSSI-LSSVR, HSPPSO, ACO, and MBA, respectively.

Figure 12 Localization Errors Against Transmission Range

9. Summary and Conclusions

Manufacturing WSN devices comprises several imposed restrictions, such as

the battery size and extra functions, including the navigation tool GPS. In addition,

WSN applications and projects usually require high localization accuracy in order

to achieve or implement specific tasks. Due to the reasons mentioned above, the

centralized localization approaches, which utilize RSSI technique, are preferable

and considerable as a satisfactory and economically effective solution for several

applications and projects of WSN that require high localization accuracy and low

deployment cost simultaneously.

In the literature, an enormous number of scientific works in research and

experimental means, affirmed that the generated error by the localization

algorithms which utilized RSSI is an outcome of the weak accuracy of RSSI

measurements when applied it to obtain the inter-distance between sensor nodes.
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Firstly, this paper drew the implementation steps of the suggested hybrid

localization algorithm IWDSA to localize the sensor nodes deployed in the target

WSN networks. Secondly, this paper introduced a perfect method to evaluate the

proposed localization algorithm considering several metrics, including localization

accuracy and complexity. It was assured that the RSSI technique is utilized to

calculate the inter-distances between nodes deployed in the target area. Several

simulation experiments were handled to evaluate the proposed hybrid algorithm.

Simulation results demonstrated that IWDSA could achieve perfect localization

accuracy regardless of the error resulting from RSSI measurement. Considering the

complexity, the results demonstrated the performance of IWDSA under the effects

of several factors, including anchors density and transmission range. The results

proved that IWDSA reached the best solution in a short time compared to basic

IWD and other algorithms, which contributed to achieving the localization process

in a short time that will contribute to extend the lifetime of the nodes’ battery.

The advantages of two categories of localization approached, specifically

range-based and centralized-based, have been exploited by the proposed hybrid

algorithm to enhance localization accuracy and improve localization rate. The

critical contribution of this research was to enhance the performance of the basic

IWD by hybridizing it with SA. Our plan for future work is to study, evaluate, and

investigate the performance of the assumed hybrid algorithm IWDSA with other

categories of localization approaches, including range-free and distributed

categories.
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