
Int. Journal of Applied IT Vol. 01 No. 02 (2017)

International Journal
of Applied Information Technology

http://journals.telkomuniversity.ac.id/ijait

Scrambling and De-Scrambling Implementation
Using Linear Feedback Shift Register Method on FPGA

Manda Lurina a, Sugondo Hadiyoso b, *, Rina Pudji Astuti c

a,c School of Electrical Engineering, Telkom University, Indonesia
b School of Applied Science, Telkom University, Indonesia

A R T I C L E I N F O A B S T R A C T

Received June 7, 2017

Revised July 25 2017
Accepted August 9, 2017

Available online August 14, 2017

Keywords

Scrambling, De-scrambling, LFSR,
PRBS

Digital broadband communications require a fast, functional and efficient system. In a digital

communication system, a long sequence of bits ‘0’ or ‘1’ will inherits the loss of bit

synchronization, and hence it can cause the false detection on the receiver. To avoid this, long

sequence of bits will be randomized first so that long sequence of bits ‘0’ or ‘1’ can be

removed. This randomization process is called scrambling and the circuit that works for the

process is a scrambler. In the receiver there is a descrambler that serves to return the bits to

their original information. This paper presents a design of scrambler and descrambler using a

combination of Linear Feedback Shift Register (LFSR) with 15 registers, XOR logic gates,

and Pseudo Random Binary Sequence (PRBS) generator structure with polynomial 1 + x14 +

x15. One of the two main parts of LFSR is the shift register while the other is the feedback. In

LFSR, the bits contained within the selected position in the shift register will be combined in

a function and the result will be put back into this register's input bit. Feedback also makes

the system more stable and no error occurrence. Then special tap is taken from a certain point

in XOR and returned as a feedback register. The system is implemented on FPGA board

Altera De0-Nano EP4CE22F17C6 Cyclone IV E. Resource memory required <1% of

available memory. Bit rate that can be achieved with clock speed 50MHz is 335570.47 bps.

* Corresponding author at:

School of Applied Science, Telkom University,

Jl. Telekomunikasi No. 1, Terusan Buah Batu, Bandung, 40257

Indonesia.
E-mail address: sugondo@tass.telkomuniversity.ac.id

ORCID ID:
Second Author: 0000-0002-2086-2156

https://doi.org/10.25124/ijait.v1i02.876

Paper registration number IJAIT000010208 2017 © The Authors. Published by School of Applied Science, Telkom University.

This is an open access article under the CC BY-NC license (https://creativecommons.org/licenses/by-nc/4.0/).

http://orcid.org/0000-0002-2086-2156
https://doi.org/10.25124/ijait.v1i02.876

60 Int. Journal of Applied IT Vol. 01 No. 02 (2017)

1. Introduction

Digital communication has grown so rapidly in line with the growth and

development of the era of computerization and telecommunications. To facilitate

the integration of a reliable telecommunication system, digital communication has

many advantages over analog communications such as signal reinvention much

easier, more resistant to distortion and interference and minimum error rate [1]. In

broadband communications with high speed greater than 256Kbps [2], error rate

becomes the main concentration to ensure reliability and communication quality.

It requires careful synchronization between the sender and receiver so that data can

be represented correctly without any errors. On the theory of data [3] in high speed

data communications has the problem of bit loss synchronization resulting from

long sequences of '0' or '1' bits, it can make errors data representation on the

receiver. Beside using channel coding techniques, to solve this problem, long

sequence of bits will be randomized first so that long sequence of bits ‘0’ or ‘1’ can

be removed. This randomization process is called scrambling and the circuit that

works for the process is a scrambler. In the receiver there is a descrambler that

serves to return the bits to their original information.

Scrambling techniques are widely used for information and data security, as in

research conducted by Niu Jiping. The paper discusses an AES-based digital data

scrambling and recovery scheme [4]. Another related research is image encryption

based on the Linear Feedback Shift Register method [5] that successfully

implements complex methods for the security of a digital image.

Scrambling techniques on digital communications systems are also widely

applied to information security, error handling and provide solutions to the problem

of bit synchronization due to long bits of '0' or '1' in communication with high data

rate. The scrambling method that can be used is the Linear Feedback Shift Register

(LFSR). This method offers computation efficiency and high performance. Some

researchers have simulated this method on communication systems. Research by

Dhiraj, designed a scrambling and de-scrambling system on ALTERA CYCLONE

II FPGA [6]. The use of LSFR in image encryption is also used by Allawi [7]. In

his research new LFSR method of color image encryption to reorder position of the

image pixels. The use of scrambling to suppress bit error was presented in the study

[8] by Javaid who successfully simulated the scrambling method to increase BER.

From the literature review that has been described, a data scrambling scheme is

indispensable for the reasons already mentioned above. Some simulations that have

been done in previous research need to be implemented on level hardware so that

it can be directly applied to communication system based on embedded application.

Therefore, in this paper we present a design of scrambler and descrambler machines

using 15 bit LFSR and Pseudo Random Binary Sequence (PRBS) generator

structure with polynomial 1 + x14 + x15. The simulation results from the design,

implemented on the FPGA Altera De0-Nano EP4CE22F17C6 Cyclone IV E.

The main contents of this paper are organized as follows; Section II presents

design methodology. Section III presents implementation of the system. Section IV

provides the brief description of the test result then the conclusions at section V.

2. Design Methodology

The design stage is done by designing system and simulation on Matlab, input

and output simulation using Microsoft Excel, create and simulate VHDL language

using ModelSim, the last VHDL program is implemented on FPGA using Quartus.

 Int. Journal of Applied IT Vol. 01 No. 02 (2017) 61

Overall, the system block diagram implemented in this research is shown in Figure

1.

Figure 1 Design System

In the transmitter, the scrambler circuit will randomize the original information

signal. In the receiver, there is a descrambler that serves to return the bits to their

original information. This work using a combination of LFSR with 15 registers,

XOR logic gate, and PRBS generator structure with polynomial 1 + x14 + x15.

2.1. Data Generator

The data generator is a circuit that generates the bit stream as a representation

of the transmitted information. In this research, data generator will generate binary

numbers with randomly ‘0’ and ‘1’ values.

2.2. Pseudo Random Binary Sequences (PRBS)

PRBS is a pseudo random binary sequence that performs its own repetition. The

original random sequence will not repeat itself [9], but the original random

sequences are difficult to generate. But PRBS with a long sequence (billions of

bits) shows similarities with the original random signal, and sufficient for testing

purposes. The PRBS pattern can produce all possible combinations 1 and 0 over a

given time period. PRBS can be generated by sliding bits through a number (N) in

the cascade register, where some of the output registers (called as tap sets) are

modulo sum and feedback to the input of the first register.

2.3. Linear Feedback Shift Register (LFSR)

PRBS is implemented using LFSR or Linear Feedback Shift Register. LFSR

has two main parts, namely shift register and feedback action [10]. The function of

shift register is to shift the contents of the register to the adjacent position in the

register. If the bit position is at the end of the register, then the contents will exit

the register. The position of the bits on the other end will be left empty unless a

new input enters the register. The linear function of the single bits is only XOR and

inverse-XOR, thus, LFSR is the shift register whose input bit is generated from the

XOR process some bits of the overall shift register value.

The initial value of LFSR is called seed [9]. The LFSR operation is

deterministic, the stream of values generated by the register is actually determined

from the previous state. Since the register has a limited number of state

possibilities, there will be repeated cycles. LFSR with well-chosen feedback

function generates a series of bits and has a long cycle. Diagram block of LFSR

operation consist of D-Flip Flop and XOR gate as shown in Figure 2.

62 Int. Journal of Applied IT Vol. 01 No. 02 (2017)

Figure 2 LFSR Operation

3. Implementation

3.1. Data Generator

The generator data will produce bit data as a representation of the source

information. This data generator is actually pseudo random because the resulting

random bit is the result of computing two variables. Here is the data generator block

on the RTL level design shown in Figure 3.

Figure 3 RTL Design of Data Generator

Two variables are namely a and b, each variable consists of 75 bits with a

randomly generated pattern as follows.

a = 110011011001110010101010000111101010001011111001010101011

 111101010101010111

b = 110100101010010101011110000010101000101010101100000111101

 010101000011111011.

The random data pattern that implemented in this work follows the following

explanation bellow.

1. In the first 75 bits (1-75), the generator output is same with value of a.

2. In the second 75 bits (76-150), the generator output is the sum of a and b,

where the carry of the sum is not included as the output of the generator.

3. In the third 75 bits (151-225), the generator output is result of sum in the

second 75 bit with variable b, where the carry of the sum is not included as

the generator output.

4. In the fourth 75 bits (226-300), the generator output is result of sum in the

third 75 bit with variable b, where the carry of the sum is not included as

the generator output.

If procedure above applied continuously, the data generator will generate

infinite and different bits. Output sample of data generator can be seen on

Figure 4.

 Int. Journal of Applied IT Vol. 01 No. 02 (2017) 63

Figure 4 Output Sample of Data Generator

3.2. Scrambler and De-Scrambler

The design and implementation of scramblers and de-scramblers is the main

work of this research. The design of this scrambler and descrambler uses PRBS

technique with 15 bit LFSR. So the polynomial 1 + x14 + x15 is obtained which

means to obtain the scrambler output need summing operation of modulo-2 (XOR)

between the input, the contents of register 14, and the contents of register 15. The

same process is also done to obtain descrambler output. Since 15 bits of LFSR are

used so that the number of states can be determined by calculation where n is the

number of LFSR bits used:

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑡𝑎𝑡𝑒𝑠 = 2𝑛 − 1 = 215 − 1 = 32768 − 1 = 32767

Based on the characteristics of pseudo random, in each state the composition

between 0 and 1 should be appropriate. Since 15 bits of LFSR are used, the

comparison between 0 and 1 must be 7 bits 0 and 8 bits 1 or 7 bits 1 and 8 bit 0,

besides from these two conditions the state can’t use 15 bits LFSR. Here is a sample

state of 15 bit LFSR with pseudo random properties:

000000011111111 (7 bit with value ‘0’ and 8 bit with value ‘1’)

010101010101010 (8 bit with value ‘0’ and 7 bit with value ‘1’)

000100110100111 (8 bit with value ‘0’ and 7 bit with value ‘1’)

110010111000011 (7 bit with value ‘0’ and 8 bit with value ‘1’)

100000110101111 (7 bit with value ‘0’ and 8 bit with value ‘1’)

One of the two main parts of LFSR is the shift register (the other is feedback).

Shift register is a device that serves to shift a contents of the register. When it

reaches final condition, it will cross the previous series. The contents of a shift

register are usually binary numbers, one and zero. If the contents of a shift register

are 1101, a shift (in this case the shift is done to the right) will produce a new

register content of 0110; then will generate 0011. After a continuous shift the shift

register will generate 0000. In LFSR, the bits contained in the selected position in

the shift register will be combined in a function and the result will be re-entered to

this register's input bit. Feedback also makes a system more stable and error free.

A special tap is taken from a certain point then in XOR and then returned as a

feedback register.

Figure 5 shows the scrambler block, when the first input goes into the scrambler

the register condition is 100101010000000 (initial state). Then the next step is sum

of modulo-2 (XOR) between the contents of register 14 and the contents of register

15, the result will be entered into the register and become the contents of the

register 1. The bits that previously exist in the register 1 will shift to register 2. The

next process is the sum of modulo-2 XOR) between the inputs, the contents of

64 Int. Journal of Applied IT Vol. 01 No. 02 (2017)

register 14, and the contents of the register 15 where the sum is the scrambler

output. The scrambler output will be the descrambler input.

In the descrambler block (see Figure 6), the circuit will reorder the previously

randomized data in the scrambler to allow the data to be received and read by the

receiver. Data that has been through the direct transmission channel will go into

the shift register at the receiver. The register condition is 100101010000000 (initial

state). Then the summation of modulo-2 (XOR) between the contents of register

14 and the contents of register 15, the result will be entered into the register and

become the contents of the register 1. The bits that previously exist in the register

1 will shift to register 2. The next process is summation modulo-2 XOR) between

the inputs, the contents of register 14, and the contents of the register 15 where the

sum is the descrambler output. The descrambler output should be the same as the

scrambler input.

Figure 5 Scrambler Diagram

Figure 6 De-scrambler Diagram

The simulation results in ModeSim for scrambler and de-scrambler are shown

in Figure 7.

Figure 7 The Results of the Scrambler and De-scrambler Simulations on ModelSim

 Int. Journal of Applied IT Vol. 01 No. 02 (2017) 65

The resulting output of scrambler is the result of XOR between the inputs, the

contents of register 14, and the contents of register 15. In the simulation shows that

the scrambler produces the output after a delay of 100ps from the input value into

the scrambler (derived from the input generator output) and descrambler produces

output after the delay 100ps of input value into descrambler (derived from

scrambler output). Figure 7 shows that the process of input and output validation

of the system with the input variables a and b is in accordance with the theory of

scrambler and descrambler where the output descrambler has the same value as the

scrambler input.

4. Result

The design and simulation results on ModelSim are tested on FPGA hardware

level to ensure the system design works well. The tools used to view the output are

Logic Analyzer (LA) connected to the output pins of the random generator,

scrambler and de-scrambler. In addition, the output can also be viewed through the

I/O LED lights on the FPGA board. The target device used is Altera De0-Nano

FPGA EP4CE22F17C6 Cyclone IV E. In this work used 3 pieces of FPGA board

each as data generator, scrambler and de-scrambler. The results of the

implementation are shown in Figure 8.

Figure 8 Implementation on FPGA

Detailed explanations of the implementation above are:

4.1. Data Generator Output

Figure 9 Testing the input generator block on logic analyzer in real-time

From the output of logic analyzer in Figure 8 can be analyzed that the data

generator works. The generator generated output is a random bit stream with value

is between 0 and 1.

4.2. Scrambler Output

The output generated by the random generator will be the scrambler input.

From the observation result on logic analyzer Figure 10 can be analyzed that the

input on the scrambler experience randomization process so that the signal form in

Figure 9 and Figure 10 become different.

Figure 10 Testing scrambler blocks on logic analyzer in real-time

66 Int. Journal of Applied IT Vol. 01 No. 02 (2017)

4.3. De-Scrambler Output

The resulting output of scrambler will be the descrambler input. From the

observation on the logic analyzer can be analyzed that the process of returning data

scrambled by scrambler can run according to given algorithm. Figure 11 shows that the

output signal form descrambler has the same shape as the Figure 9 which is the output

signal form generated by the generator data. The result of integration for all system

blocks can be seen in Figure 12.

Figure 11 Testing of de-scrambler blocks on logic analyzer in real-time

Figure 12 Results of System Integration

4.4. Memory Resource

The implementation of scrambler and de-scrambler blocks uses 99 and 101 logic

elements of 22,320 logic elements (<1%) provided by the Cyclone IVE FPGA. This

logic element consists of 99 combinational functions and 56 dedicated logic registers.

From the results of the implementation can be concluded that the resources used in each

block less than 1% so that this application can implemented on embedded application

with a small memory resource.

4.5. Delay and Data Rate

Based on the implementation, the scrambler output has a delay process of 1 clock

and the descrambler output also has a delay process of 1 clock. The clock frequency

implemented on the FPGA is 50 MHz as the basis of bit rate calculation.

𝑓𝑐𝑙𝑜𝑐𝑘 =
50 𝑥 106

75 𝑥 106
= 0,67 𝑥 106 𝐻𝑧

𝑇𝑐𝑙𝑜𝑐𝑘 =
1

𝑓𝑐𝑙𝑜𝑐𝑘

=
1

0,67 𝑥 106
= 1,49 𝑥 10−6 𝑠

𝐷𝑒𝑙𝑎𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 2 𝑥 𝑇𝑐𝑙𝑜𝑐𝑘 = 2 𝑥 1,49 𝑥 10−6 = 2,98 𝑥 10−6 s

𝐵𝑖𝑡 𝑟𝑎𝑡𝑒 =
1

𝐷𝑒𝑙𝑎𝑦 𝑃𝑟𝑜𝑐𝑒𝑠𝑠
=

1

2,98 𝑥 10−6
= 335570.47 𝑏𝑝𝑠

From the calculation above, we can get the value of the delay process of the system

is 2,98 𝑥 10−6𝑠 with bit rate of 335570.7 bps.

5. Conclusion

In this study successfully designed and implemented scrambler and descrambler

using combination of LFSR (Linear Feedback Shift Register) with register count of 15

registers, XOR logic gate, and PRBS (Pseudo Random Binary Sequence) and PRBS

generator structure with polynomial 1 + X14 + X15. The FPGA resource used in each

block is less than 1%. Delay process system is 2,98 𝑥 10−6s with bit rate was reached

335570.47 bps at clock speed 50 MHz. This system can be implemented for embedded

application on communication system.

 Int. Journal of Applied IT Vol. 01 No. 02 (2017) 67

Bibliography

[1] K.M.L Sai Indrani and P. Ramesh, “A Study on the Performance of an AWGN

Channel in a Communication System,” International Journal of Electronics &

Communication Technology, Vol. 4, Issue 2, pp. 89–90, June 2013.

[2] ___________,” How ITU’s Broadband Standards Improve Access to the Internet,”

[online] available at http://www.itu.int/osg/spu/ip/chapter_seven.html [accessed,

June, 2017]

[3] N. Vlajic, “Digital Transmission of Digital Data: Line and Block Coding, Digital

Transmission Modes,” course material, 2010.

[4] N. Jiping, Z. Yongchuan, H. Zhihua， and Y. Zuqiao, “A Digital Image Scrambling

Method Based on AES and Error-correcting Code,” International Conference on

Computer Science and Software Engineering., pp. 677–680, 2008.

[5] Rohith S., K. N. H. Bhat, and A. N. Sharma, “Image Encryption and Decryption

using Chaotic Key Sequence Generated by Sequence of Logistic Map and Sequence

of States of Linear Feedback Shift Register,” International Conference on Advance

in Electronics, Computers and Communications, 2014.

[6] D. S. Bhojane, S. S. Oak, and A. S. Joshi, “Design of Logical Scrambling and De-

Scrambling System for High Speed Application,” International Conference on

Computing for Sustainable Global Development, pp. 617-622, 2016.

[7] S. T. Allawi and J. H. Al-A’meri, “Image Encryption Based on Linear Feedback

Shift Register Method,” Al-Sadeq International Conference on Multidisciplinary in

IT and Communication Science and Applications, 2016.

[8] J. A. Sheikh, Uzma, S. A. Parah, and G. M. Bhat, “Bit Error Rate (BER)

Improvement of Multiple Input Multiple Output Orthogonal Frequency Division

Multiplexing (MIMO-OFDM) System Using Bit Level Scrambling,” IEEE

INDICON, 2015

 [9] K. Amandeep, "Linear Feedback Shift Registers in Wireless Communication

Systems," India : Thapar Institute of Engineering and Technology, 2006.

[10] F. Masoodi, S. Alam, and M. U. Bhokari, “An Analysis of Linear Feedback Shift

Registers in Stream Ciphers,” International Journal of Computer Applications

Volume 46, No.17, pp 46-49, May 2012 .

