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This study proposes a novel, low-cost, and portable real-time ECG monitoring system integrating the 
AD8232 sensor and Arduino Nano for comprehensive heart rate variability (HRV) assessment. Unlike 
conventional ECG devices, the proposed system combines affordable hardware with an embedded 
processing algorithm capable of directly calculating key time-domain HRV parameters—RMSSD, 
SDNN, NN50, pNN50, and VO₂Max—without the need for high-end laboratory equipment. The 
primary objective is to develop and validate a system that can accurately capture physiological 
responses during both resting and active conditions, enabling fitness assessment and potential early 
cardiovascular risk detection in field applications. The system was tested on five healthy subjects aged 
20–22 years, demonstrating stable operation for over 40 minutes. Results showed that the average 
heart rate (HR) increased by 6.56% ± 4.8% from rest to activity, with the largest increase in Subject 
1 (+12.09%) and the smallest in Subject 3 (+0.93%). Resting RMSSD values ranged from 75.36 to 
99.76 ms, decreasing on average by 6.21% ± 4.7% during activity. SDNN values ranged from 62.18–
131.88 ms, with Subject 2 showing an increase (122.33→129.06 ms) and Subject 5 a significant 
decrease (131.88→88.48 ms). NN50 at rest reached a maximum of 124 counts (pNN50=77.78%) and 
a minimum of 23 counts (pNN50=27%), with an average pNN50 reduction of −18.42% ± 21.5% 
during activity; the largest drop occurred in Subject 5 (−54.64%), while Subject 1 increased 
(+26.07%). VO₂Max ranged from 29.98 ml/kg/min (poor) to 39.90 ml/kg/min (excellent), 
correlating with HRV trends. These findings confirm that the system can quantitatively differentiate 
autonomic responses between individuals, highlighting its potential for real-time, on-site 
physiological monitoring, fitness evaluation, and early detection of abnormal cardiovascular patterns. 
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1. INTRODUCTION 
Coronary heart disease (CHD) remains one of the leading causes of death globally. Data from RSU Haji Surabaya indicate 
that hypertension and diabetes mellitus are the primary risk factors contributing to the high prevalence of CHD. This 
condition is caused by the buildup of fatty plaques in the coronary arteries, which restricts blood flow to the heart [1]. In 
Indonesia, the prevalence of CHD increased from 0.5% in 2013 to 1.5% in 2018, based on Riskesdas data. Research from 
the Subang Regional Hospital shows a significant correlation between high cholesterol and coronary heart disease (CHD), 
which is caused by unhealthy lifestyle habits [2]. An ideal health monitoring system typically emphasizes not only 
accuracy but also portability and efficiency. Research by Zen et al. demonstrated that the use of Long Short-Term 
Memory (LSTM) architecture on the Raspberry Pi allows for real-time heart rate detection with up to 96.66% accuracy, 
making it a practical solution for individual health monitoring [3]. Another study, by Akbar et al., stated that a real-time 
heart rate monitoring system must consider device portability, signal accuracy, and reliable connectivity [4]. 
 
Several related studies have explored various portable heart monitoring solutions. H. Nissa and A. S. Rachman used the 
AD8232 sensor to read heart rhythms. This sensor was chosen for its ability to detect the heart's electrical signals with 
high accuracy [5]. Another study by Sangeetha Lakshmi et al. utilized a cloud platform to store patient health data, 
allowing medical personnel to access patient data from multiple locations and conduct analysis for early detection of 
deteriorating health conditions [6]. 
 
Elmi Ramlan Bugis et al. proposed a portable heart rate monitor using the MAX30102 PPG sensor. Although the system 
recorded an average error of only 2.61%, its accuracy was affected by user movement, highlighting the need for improved 
stability and motion tolerance [7]. Royan et al. evaluated the accuracy of the AD8232 ECG sensor at various amplitudes 
and BPM levels using the ECP1202 simulator. Although the sensor performed accurately at higher amplitudes, it failed 
to detect signals at 0.5 mV, indirectly demonstrating its limitations in low-signal conditions [8]. Dange et al. also 
developed an ECG monitoring system using the AD8232 and Wi-Fi ESP8266, capable of transmitting accurate heart rate 
data [9]. Similarly, Pamungkas used the AD8232 sensor to record ECG signals and the MAX30102 sensor to measure 
heart rate and blood oxygen levels [10]. Recent studies have also highlighted the potential of low-cost health monitoring 
devices that integrate ECG and HRV analysis, showing promising accuracy while maintaining affordability and 
portability [11]. 
 
Previous studies have shown that most portable monitoring systems (i) lack advanced analytics beyond simple heart rate 
detection, (ii) are susceptible to motion artifacts and noise, or (iii) rely heavily on continuous internet connectivity, which 
reduces their practicality in certain settings. To address these limitations, this study proposes a portable ECG monitoring 
system using an AD8232 sensor and an Arduino Nano, with serial transmission to a laptop for further processing. The 
processing software not only visualizes the ECG waveform in real time but also performs Heart Rate Variability (HRV) 
analysis [12], R-R interval plots, Poincaré mapping [13], and estimation of maximal oxygen uptake (VO₂Max) [14], [15], 
providing a more comprehensive assessment of cardiovascular health and physical fitness compared to previous 
approaches. 
 
The advantages of this proposed system are: 
1. Enhanced analytical capabilities – unlike previous studies limited to BPM or ECG visualization, our system 

integrates HRV, Poincaré plots, and VO₂Max estimation for broader clinical and fitness evaluation. 
2. Low-cost and portable hardware – the use of an Arduino Nano and AD8232 ensures affordability and ease of 

implementation compared to more complex IoT or Raspberry Pi solutions. 
3. Offline operability with optional connectivity – the system can function without internet access, enhancing its 

applicability in remote or resource-constrained environments. 
The remainder of this paper is organized as follows. Section 2 presents the methodology and system design. Section 3 
discusses the results and their implications, including threats to validity. Finally, Section 4 concludes the study by 
summarizing the key contributions and suggesting potential directions for future research. 
  
2. METHOD 
Several studies have reported important limitations in the development of portable ECG monitoring systems. For 
example, some approaches rely heavily on stable internet connections for real-time functionality [6], [10]. Others tend to 
suffer from motion-related artifacts, which reduce measurement accuracy [7], [8]. In addition, many existing designs 
remain confined to basic BPM visualization and do not provide more advanced physiological metrics [5], [9]. In response 
to these shortcomings, this study proposes a low-cost and portable solution built on the Arduino Nano and AD8232 
sensor, combined with bandpass and moving average filtering for improved signal quality. Beyond simple ECG display, 
the system introduces extended analytical features, including HRV assessment, Poincaré mapping, and VO₂Max 
estimation. The following subsections describe the methodology in detail. 
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2.1. Electrocardiogram (ECG) 
An electrocardiogram (ECG) is a diagnostic method that records the heart's electrical activity that occurs during the 
depolarization and repolarization of the heart muscle during each heartbeat cycle [16]. This non-invasive device works 
by detecting changes in electrical potential through electrodes placed on the skin surface, such as those on the chest, 
wrist, and ankle. These electrical signals are then translated into a graphical form known as an electrocardiogram. In 
clinical practice, the ECG plays a crucial role in detecting various cardiovascular disorders, including arrhythmias, 
coronary artery disease, and myocardial infarction, which are indicated by characteristic abnormalities in the waveform 
[17]. 
 
A standard ECG consists of three main components: the P wave, the QRS complex, and the T wave, each of which 
represents a different electrical event in the cardiac cycle. The P wave reflects atrial depolarization, the QRS complex 
represents ventricular depolarization, which triggers contraction to pump blood out of the heart [18], and the T wave 
represents ventricular repolarization as it returns to its resting state. Changes in the duration, amplitude, or morphology 
of these components often indicate pathological abnormalities. For example, a prolonged QRS complex duration may 
indicate a conduction system abnormality, while ST-segment elevation is a hallmark of an acute heart attack. 
 
The advantage of the ECG lies in its non-invasive, rapid, and relatively inexpensive nature, making it widely used for 
both diagnosis and monitoring. In addition to diagnosing heart disease, the ECG also serves to assess disease progression 
and monitor the effects of drug therapy. In emergencies, the ECG allows early detection of myocardial damage so that 
medical intervention can be initiated promptly. Routine screening is also beneficial for individuals with risk factors such 
as hypertension, diabetes, or a family history of heart disease. 
 
In sports medicine, the ECG plays a crucial role in pre-participation screenings to ensure the heart condition of athletes 
before engaging in high-intensity activities [19]. Technological advances have also led to the emergence of portable, 
microcontroller-based ECG devices, such as the Arduino Nano combined with the AD8232 sensor, enabling more 
affordable heart health monitoring for personal and small clinic use [11], [20]. 
 
However, interpreting ECG results requires specialized expertise, and signal quality can be affected by electrode 
placement, patient movement, and electrical interference that can potentially cause artifacts. Despite these limitations, 
the ECG remains one of the most essential cardiovascular examination tools. Recent technological developments in 
hardware and signal processing are expected to further improve accuracy and accessibility, thus supporting early 
detection efforts and proactive monitoring of heart health [21]. 
 
2.2. Heart rate variability (HRV) 
Heart rate variability (HRV) refers to the variation in the time interval between heartbeats, recorded through an ECG 
signal. HRV reflects the balance between the sympathetic nervous system, which increases heart rate during stress or 
physical activity, and the parasympathetic nervous system, which decreases heart rate for relaxation [12]. 
 
In time-domain analysis, one important parameter is the SDNN, with normal values in healthy populations generally 
>100 ms [22]. Other frequently used parameters are RMSSD (>25 ms) and pNN50 (>3%) as indicators of autonomic 
balance [23]. Factors such as age, gender, fitness level, measurement time, and body position can influence HRV results 
[24]. A normal resting heart rate in healthy individuals ranges from 60–100 BPM with an R-R interval of approximately 
0.6–1.2 s [25]. Therefore, HRV interpretation should be combined with other clinical and physiological parameters to 
obtain a more complete picture of cardiovascular health. 
 
HRV has widespread applications in medicine and sports. In medicine, HRV is used to monitor patients' clinical 
conditions, detect fatigue, and evaluate the effectiveness of lifestyle interventions and medical therapies. In sports, HRV 
helps monitor fitness levels, training readiness, and injury risk. Athletes with high HRV generally have better recovery 
capacity than individuals with low HRV. 
 
2.3. Maximum Oxygen Volume (VO₂Max) 
Maximum Oxygen Volume (VO₂Max) represents the highest rate of oxygen consumption attainable during maximal 
exercise, measured in milliliters of oxygen per kilogram of body weight per minute (ml/kg/min). This critical 
physiological parameter serves as the gold standard for assessing an individual's aerobic capacity and cardiovascular 
endurance. Higher VO₂Max values indicate superior oxygen delivery and utilization by working muscles, which directly 
correlates with enhanced endurance performance in activities like distance running, cycling, and swimming. The average 
sedentary adult typically exhibits VO₂Max values between 30-45 ml/kg/min, while elite endurance athletes often surpass 70 
ml/kg/min [26]. Cardiac rehabilitation programs frequently employ VO₂Max measurements to establish safe exercise 
thresholds and monitor patient progress [27]. Multiple factors influence VO₂Max, including both unmodifiable and 
modifiable elements. Genetic predisposition accounts for approximately 50% of an individual's VO₂Max potential, 
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establishing an upper limit that training cannot exceed. Age-related decline begins in the late 20s, with VO₂Max decreasing 
about 1% per year, primarily due to reduced cardiovascular efficiency and muscle mass. Gender differences are evident, 
with males generally displaying 15-30% higher values than females, largely attributable to greater muscle mass, higher 
hemoglobin levels, and larger heart size. Body composition plays a significant role as muscle tissue consumes 
substantially more oxygen than fat tissue during exercise. Among modifiable factors, regular aerobic training can increase 
VO₂Max by 15-20% through physiological adaptations including increased stroke volume, enhanced capillary density, 
and improved mitochondrial function [28]. Resistance training, such as running, swimming, and cycling, is known to 
significantly increase VO₂Max [29]. 
 
Accurate VO₂Max assessment typically requires laboratory-based maximal exercise testing using treadmill or cycle 
ergometer protocols with direct analysis of respiratory gases. These tests involve progressively increasing exercise intensity 
until volitional exhaustion while measuring oxygen consumption and carbon dioxide production. Although considered 
the gold standard, such testing requires specialized equipment and trained personnel. Practical alternatives include field 
tests like the 12-minute Cooper run, where the distance covered predicts VO₂Max, or the multistage 20-meter shuttle run 
(Balke test) [30][31]. While these field methods show strong correlations (r=0.70-0.90) with laboratory measures, they 
may underestimate true VO₂Max by 5-15% in trained individuals [31]. VO₂Max holds significant clinical and performance 
applications across multiple domains. In sports medicine, it serves as a primary determinant of endurance capacity, with 
values above 60 ml/kg/min typically required for competitive endurance athletes [24]. Clinically, VO₂Max provides 
powerful prognostic information, where values below 18 ml/kg/min indicate severe cardiovascular risk and impaired 
functional capacity [26]. Emerging research demonstrates that each 3.5 ml/kg/min increase in VO₂Max corresponds to 
approximately a 10-15% reduction in all-cause mortality, highlighting its importance as a health biomarker [32]. 
Furthermore, longitudinal studies suggest that maintaining VO₂Max through regular exercise may delay age-related 
physiological decline by 5-8 years [32]. The comprehensive assessment of VO₂Max integrates multiple physiological 
systems, reflecting the integrated function of pulmonary, cardiovascular, and muscular systems. As such, it remains one of 
the most valuable metrics in exercise physiology, sports performance, and preventive medicine. Current evidence 
strongly supports regular aerobic exercise as the most effective intervention for preserving and enhancing VO₂Max across 
the lifespan, with significant implications for both athletic performance and long-term health outcomes [26]. 
 
2.4. Bandpass Filter 
A Bandpass Filter (BPF) is an essential signal processing component in Electrocardiogram (ECG) systems that selectively 
allows signals within a specific frequency range to pass while attenuating unwanted frequencies. This filter plays a critical 
role in isolating the QRS complex from background noise, P and T waves, and other artifacts that may interfere with ECG 
analysis [33]. The BPF combines both high-pass and low-pass filter characteristics, where the high-pass filter eliminates 
low-frequency noise (such as baseline wander and respiratory artifacts), and the low-pass filter suppresses high-frequency 
interference (including electrical noise and muscle activity). 
 
The American Heart Association (AHA) recommends an optimal cutoff frequency range of 0.05 Hz to 150 Hz for ECG 
signal processing [34]. This range preserves all clinically relevant cardiac signal components while minimizing waveform 
distortion. Digital implementations commonly employ Butterworth filters due to their smooth frequency response and 
minimal phase distortion. Research indicates that a BPF with an 8-20 Hz frequency range significantly improves the 
signal-to-noise ratio (SNR), particularly for R-wave detection in motion-corrupted ECG signals [33]. However, improper 
filter selection can lead to diagnostic errors. For instance, using a high-pass filter with a 0.5 Hz cutoff may distort the ST 
segment, potentially causing misinterpretation of ischemic conditions. Thus, real-time monitoring systems should 
implement a 0.05 Hz high-pass cutoff to maintain waveform fidelity [34]. 
 
2.5. Moving Average Filter 
The moving average (MA) filter is a straightforward yet effective approach in signal processing, where each point in the 
sequence is replaced by the mean of its neighboring samples. When applied to ECG signals, the MA filter can suppress 
random fluctuations and electrical noise, producing a waveform that is easier to interpret, particularly in the identification 
of the QRS complex. Instead of altering the morphology of the ECG, this smoothing method preserves the essential peaks 
while reducing small irregularities caused by electrode motion or baseline interference. Recent studies have shown that 
using an averaging window of around 26 samples provides a good balance between noise suppression and waveform 
clarity, thereby improving the accuracy of R-peak detection, which serves as the primary reference in heart rate estimation 
[35], [36]. 
 
2.6. Noise Filtering 
In this research, several methods are used to eliminate noise in Electrocardiogram (ECG) signals to produce more accurate 
and stable data. Noise commonly found in ECG signals can come from electrical interference, electrode movement, muscle 
noise (EMG), and baseline disturbances. To address these issues, this system uses a combination of built-in filters from 
the AD8232 sensor along with two additional methods: Bandpass Filter (BPF) and Moving Average Filter (MA). 



Utama et al., IJIES (International Journal of Innovation in Enterprise System) Vol. 09 No. 02 (2025) p. 134-150 

 
 

   
*jana.utama@email.unikom.ac.id 138 
 

2.7. Built-in Filters of AD8232 Sensor 
The AD8232 sensor is equipped with a High-Pass Filter (HPF) and Low-Pass Filter (LPF) to eliminate noise before the 
signal is sent to the Arduino Nano. These built-in filters help reduce baseline disturbances and unnecessary high 
frequencies. 
 
AD8232 sensor specifications: 
a. Operating Voltage: 2.0V - 3.3V DC 
b. Current Consumption: 170 µA 
c. Frequency Response: 0.5 Hz - 40 Hz 
d. Gain: ~100x (40 dB) 
e. Filters: High-Pass & Low-Pass. 
 
The AD8232 sensor uses a High-Pass Filter (HPF) to eliminate low-frequency noise, such as baseline drift caused by 
electrode movement or posture changes, and a Low-Pass Filter (LPF) to remove high-frequency noise like electrical 
interference and muscle signals (EMG). With these built-in filters, the resulting ECG signal is cleaner before being further 
processed by the system. 
 
2.8. Bandpass Filter Implementation 
The second method implemented for noise reduction is a Bandpass Filter (BPF) with a frequency range of 0.5-40 Hz. This 
filter is used to process ECG signals by only passing relevant frequencies between 0.5 Hz to 40 Hz, while eliminating 
frequencies below 0.5 Hz (baseline wander) and above 40 Hz (muscle noise and electrical interference). With the 
Bandpass Filter, the PQRST signal becomes clearer, R-peak detection is more accurate, and it improves the reliability of 
Heart rate variability (HRV) and VO₂Max calculations. 
Specifications of the Bandpass Filter used: 
a. Lower Cutoff Frequency: 0.5 Hz 
b. Upper Cutoff Frequency: 40 Hz 
 
2.9. Moving Average Filter (MA) 
The third method used for noise reduction is the Moving Average (MA) filter with a 26-sample window. This filter works 
by averaging several recent samples to smooth the signal and reduce small random disturbances. With the MA filter, 
minor variations caused by electrical noise or electrode movement can be reduced without altering the original ECG 
waveform shape. This filtering approach has been widely applied in biomedical signal processing because of its simplicity 
and efficiency, and recent studies confirmed its effectiveness in ECG enhancement, particularly when integrated with 
adaptive or hybrid techniques [35], [36]. 

(a) (b) 

(c) (d) 
 

Figure 1 - (a) Original Signal; (b) Moving Average Filter 8; (c) Moving Average Filter 26; (d) Moving Average 
Filter 101  
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2.10. Data Acquisition Process 
In this system, the data acquisition process is performed to obtain Electrocardiogram (ECG) signals in real-time, which 
are then used for Heart rate variability (HRV) and Maximal Oxygen Volume (VO₂Max) calculations. This process consists 
of several stages, from reading signals by the sensor to data storage and analysis. 
 
Here are the data acquisition stages in this system: 
a. Sampling Rate 

The system uses a sampling rate of 1000 Hz, meaning data is collected every 1 millisecond. This frequency is chosen 
to capture all ECG signal details clearly, as human ECG signals have a frequency range between 0.5-40 Hz. With 
this sampling rate, the system ensures no important information is lost during signal recording. 
 

b. Reading Signals from the AD8232 Sensor 
The AD8232 sensor captures the heart's electrical activity through electrodes attached to the user's body. This signal 
is sent to Arduino Nano via pin A0, then converted from analog to digital using ADC (Analog-to-Digital Converter). 
This process ensures the data sent to the computer is detailed enough for further analysis. 
 

c. Filtering to Remove Noise 
After receiving the signal, the system applies a Bandpass Filter (0.5-40 Hz) to eliminate noise from electrode 
movement, muscle signals (EMG), and electrical interference. Additionally, the system also uses a Moving Average 
Filter with a 20-sample window to smooth the signal and reduce small random disturbances that may appear. 
 

d. R-Peak Detection and HRV Calculation 
After the filtering process, the system detects R-peaks in the ECG signal. This detection is important because the 
distance between R-peaks (R-R Interval) is used to determine Time Domain HRV. From this data, the system calculates 
several HRV parameters, such as SDNN, RMSSD, NN50, and pNN50, which provide information about the user's 
heart rate variability. 
 

e. VO₂Max Calculation 
After obtaining HRV data, the system calculates Maximal Oxygen Volume (VO₂Max) based on age, weight, 
automatically populated Resting Heart Rate (RHR) through the program, and automatically populated Maximum Heart 
Rate (MHR) when the user enters their age. This calculation is used to assess the user's aerobic capacity and physical 
fitness level. 
 

f. Block Diagram System 

 
 

Figure 2 - Block Diagram System 
 

The system block diagram is shown in Figure 2. This system consists of three main components: an AD8232 ECG 
sensor, an Arduino Nano microcontroller, and a computer (laptop) running Processing software. The system 
functions to measure Electrocardiogram (ECG) signals from the body, process data in real-time, and analyze Heart 
rate variability (HRV) and Maximal Oxygen Volume (VO₂Max). The AD8232 sensor functions to capture electrical 
signals from the heart. These ECG signals are then sent to the microcontroller for further processing. The AD8232 has 
high-sensitivity signal acquisition capability, enabling the system to obtain accurate and stable data. The Arduino Nano 
(IDE) serves as the initial processor for ECG signals received from the AD8232 sensor. The Arduino Nano uses a 
reader program written in Arduino IDE to read ECG signals, apply bandpass and moving average filters, before 
transmitting raw signals to the computer via serial communication. The Arduino Nano was selected due to its 
compact size and ability to handle signals in real-time. The laptop (Processing) is used to receive data from the 
Arduino Nano sent to the laptop running the Processing software. Processing is used for further data processing, 
sending start/stop commands to the Arduino, and displaying ECG signal visualization along with HRV and VO₂Max 
calculations. The laptop also serves as the control center and storage for analysis results that users can utilize for real-
time fitness monitoring. 
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g. System Flowchart 

In Figure 3, the complete system flowchart illustrates the workflow of the physical fitness monitoring system 
utilizing the AD8232 ECG sensor and an Arduino device. The process begins with the initialization of the graphical 
user interface (GUI) and all necessary variables required for system operation. Subsequently, the system opens the 
serial port to establish communication between the Arduino and the Processing 4 application. Once the connection 
is established, the system starts acquiring ECG data from the sensor. The acquired signals are processed using a 
bandpass filter and a Moving Average filter to remove noise and artifacts, ensuring cleaner and more reliable data. 
This filtering step is crucial to guarantee that the information presented to the user accurately reflects their heart 
activity. 
 
Following signal processing, the data is transmitted via serial communication to the Processing 4 application, where 
the ECG waveform is displayed in real time. This allows users to monitor their heart rate instantly, offering 
immediate insight into their physiological condition. The system is also capable of detecting R-wave peaks in the 
ECG waveform, which are essential for calculating heart rate and heart rate variability (HRV)—both key indicators 
of cardiac health and the body’s stress response. Additionally, users can input personal data to calculate VO₂Max, a 
widely recognized metric for aerobic capacity and cardiovascular efficiency. Upon completion of measurements, 
HRV and VO₂Max results are automatically stored in CSV format for subsequent analysis. 
 

 
 

Figure 3 - System Flowchart 
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 3. RESULT AND DISCUSSION 
This study tested the designed electrocardiogram (ECG) system, which uses an Arduino Nano and an AD8232 sensor. 
The goal was to check how well the system could measure and analyze ECG signals from several subjects. Testing began 
by recording ECG signals from subjects in different physical conditions. Before each measurement, the subjects rested 
for a few minutes to ensure the data represented their normal condition. The ECG signals were then sent to the Processing 
4 software for filtering, display, and analysis. 
 
The test looked at how fast and accurately the system was in calculating heart rate, R-R interval, and heart rate variability 
(HRV). To confirm the results, measurements were also taken with a standard pulse oximeter for comparison. This step 
was important to see if the system could still work well in real conditions, where noise and signal changes might affect 
the data. The results showed that the ECG system gave accurate and reliable readings, making it suitable for monitoring 
physical fitness and heart health. 
 
3.1. Electrocardiogram system testing 
The Electrocardiogram (ECG) signal system was tested to evaluate its performance under different environmental and 
physiological conditions. Testing was carried out in two scenarios. The first scenario involved measurements in a quiet 
environment, free from electrical interference and excessive body movement, to obtain clean ECG signals. The second 
scenario involved measurements taken after subjects performed physical activities, such as using an Air Walker exercise 
machine or walking, to observe ECG changes caused by physical exertion. Five subjects participated in the test, with 
each session lasting five minutes. During this time, ECG signals were recorded, analyzed, and displayed graphically 
using the Processing application. Figure 4 shows the two testing conditions: (a) a stationary or resting state, and (b) an 
active state after physical activity. 
 

 
(a) 

 

 
(b) 

 
Figure 4 - (a) Idle condition and (b) Moving condition 

 
In the resting condition, ECG signals were generally more stable and less affected by interference, allowing for more 
accurate analysis of heart rate and HRV. In the active condition, signal noise and variation increased, which could affect 
accuracy. Testing under both conditions demonstrated the system’s ability to reliably capture and process ECG signals 
in real-world scenarios, whether the subject was at rest or engaged in physical activity. This comparative observation 
reinforces the robustness and adaptability of the developed ECG measurement system in handling diverse physiological 
states without significant degradation in signal quality. 
 
Figures 5 and 6 present examples of ECG signal outputs captured during the two different testing conditions described 
earlier. Figure 5 illustrates an ECG waveform obtained from a subject in a resting state. The waveform appears stable, 
with clearly distinguishable R-wave peaks and minimal noise interference, enabling precise calculations of heart rate and 
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heart rate variability (HRV). Conversely, Figure 6 displays the ECG waveform recorded after the subject engaged in 
physical activity. In this condition, the waveform shows slight variations in baseline stability and increased minor 
fluctuations, which can be attributed to muscle activity and movement artifacts during or immediately after exercise. 
 

 
Figure 5 - Signal at rest condition 

 

Figure 6 - Signal when moving condition 

 
3.2. HRV and VO₂Max data collection 
Table 1 presents the Heart Rate Variability (HRV) and Maximum Oxygen Volume (VO₂Max) measurements for five 
respondents (Subject 1–5), aged 20–22 years, recorded under resting and active conditions. As expected, heart rate (HR) 
increased during activity—for example, Subject 1’s HR rose from 91 BPM at rest to 102 BPM during movement—
reflecting the normal physiological response to meet increased oxygen demand. Correspondingly, the R-R interval 
decreased, as seen in Subject 5’s data (0.68 s to 0.59 s), indicating an increased heart rate frequency. High RMSSD 
values, such as Subject 5’s 99.76 ms at rest, signify parasympathetic dominance and a relaxed physiological state, whereas 
reduced values during activity suggest elevated physiological stress or exertion. SDNN, representing total heart rate 
variability, reflects autonomic nervous system adaptability; for instance, Subject 2’s high SDNN of 129.06 ms during 
activity indicates strong adaptability, while Subject 4’s lower value of 65.7 ms at rest suggests reduced variability and 
potentially lower fitness. 
 
NN50 and pNN50 quantify the number and percentage of significant changes between consecutive heartbeats, with higher 
values indicating a more responsive cardiovascular system. Subject 2’s pNN50 of 78% during activity demonstrates 
stable heart regulation, whereas Subject 5’s lower value of 23.14% suggests a reduced variability response under physical 
load. For SD1 and SD2, higher values reflect greater stability and health in short-term and long-term heart rate patterns, 
respectively. Subject 5’s SD1 of 169.73 ms at rest indicates strong short-term rhythm stability, while Subject 2’s SD2 of 
150.88 ms reflects robust long-term variability. VO₂Max, a primary indicator of aerobic capacity, follows a similar 
trend—the higher the value, the better the cardiovascular fitness. Subject 2 achieved the highest VO₂Max (39.9 
ml/kg/min), suggesting excellent aerobic performance, whereas Subject 3 recorded the lowest (29.98 ml/kg/min), 
indicating relatively low aerobic capacity. These observations confirm the application’s ability to accurately capture and 
analyze physiological changes across different activity levels, as summarized in Table 1. 
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Table 1 - HRV and VO₂Max data 

 
Condition Subject Age 

(Years) 
HR R-R RMSSD SDNN NN50 pNN50 SD1 SD2 Vo2Max 

(BPM) (s) (ms) (ms) (%) (ms) (ms) (ml/kg/min) 
Resting 

Subject 1 
22 91 0.64 75.36 71.87 40 66.67 64.22 73.36 32.1 

Active 102 0.58 67.84 86.4 70 34.6 89.44 82.17 30.76 
Resting 

Subject 2 
22 67 0.76 88.74 122.33 118 70 114.62 149.33 39.9 

Active 78 0.66 76.79 129.06 129 78 126.84 150.88 38.85 
Resting 

Subject 3 
20 107 0.55 93.94 62.18 23 50 56.48 55.67 29.98 

Active 108 0.53 87.76 80.54 63 50 70.83 77.52 37.57 
Resting 

Subject 4 
20 96 0.62 83.46 65.7 68 27 49.16 67.43 31.75 

Active 94 0.63 75.03 84.76 53 28 64.71 108.68 33.73 
Resting 

Subject 5 
22 85 0.68 99.76 131.88 124 77.78 169.73 135.5 37.86 

Active 99 0.59 97.51 88.48 59 23.14 88.77 88.76 30.13 
 
Figure 7 shows resting heart-rate traces for five study participants (Subjects 1–5). Mean resting heart rates were 91, 67, 
107, 96, and 85 BPM, respectively (group mean 89.2 BPM; range 67–107 BPM; SD ≈ 13.3 BPM). The data demonstrate 
substantial inter-individual variability: Subject 2 exhibited the lowest resting heart rate (67 BPM), consistent with 
superior aerobic capacity and high HRV metrics, whereas Subject 3 showed the highest resting heart rate (107 BPM) and 
the lowest VO₂Max in the sample, suggesting reduced aerobic fitness or acute physiological stress. These findings align 
with the HRV and VO₂Max results reported in Table 1 and confirm that the developed ECG system detects meaningful 
between-subject differences in resting cardiovascular state. However, because the dataset is small and based on single-
session recordings, further repeated and standardized measurements are recommended to fully validate these 
relationships. 
 

 
Figure 7 - Heart Rate at rest for the whole subject 

 
The data in Figure 8 clearly show individual differences in cardiovascular responses to physical activity. Subject 1 
consistently recorded the highest average heart rate (108 BPM), indicating a greater cardiovascular load during 
movement. This aligns with a higher resting heart rate and may suggest lower aerobic efficiency or stronger sympathetic 
activation. Subject 3 (102 BPM) and Subject 5 (99 BPM) also displayed relatively high average heart rates, reflecting a 
moderate cardiovascular demand and potentially moderate aerobic capacity. Subject 4 (94 BPM) demonstrated a 
moderate increase from resting conditions, indicating a balanced response to activity. In contrast, Subject 2 maintained 
the lowest average heart rate during movement (78 BPM), suggesting efficient cardiac performance and potentially better 
aerobic fitness, as supported by a high VO₂Max value and favorable HRV metrics. 
 
From a physiological perspective, these variations in response may be due to differences in cardiovascular fitness levels, 
autonomic regulation, and possibly daily physical activity habits. Individuals with higher fitness levels tend to have lower 
heart rates at the same workload due to larger stroke volume and parasympathetic dominance. Conversely, individuals 
with lower physical condition or higher sympathetic nervous system dominance often exhibit a greater increase in heart 
rate at the same activity intensity. 
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Figure 8 - Heart Rate Moving condition 

 
The data in Figure 9 illustrate the Root Mean Square of Successive Differences (RMSSD) values for all subjects during 
the resting condition, revealing notable inter-individual variability in heart rate variability (HRV). RMSSD is a time-
domain HRV metric that reflects parasympathetic (vagal) activity, with higher values generally indicating greater 
autonomic flexibility and better cardiovascular adaptability. 
 
Subject 2 consistently demonstrated the highest RMSSD values, peaking above 400 ms early in the measurement before 
stabilizing around 140–160 ms. This pattern suggests strong parasympathetic dominance at rest, which is often associated 
with excellent cardiovascular health and recovery capacity. Subject 1 also showed relatively high RMSSD values initially 
(around 300 ms), though these declined more rapidly to approximately 90–110 ms, indicating good but slightly lower 
vagal tone compared to Subject 2. 
 
Subjects 4 and 3 exhibited moderate RMSSD values (70–100 ms), suggesting balanced but less pronounced 
parasympathetic activity. Subject 5 displayed the lowest RMSSD values throughout the resting period (approximately 
60–80 ms), which may indicate reduced vagal modulation or higher baseline sympathetic tone, even at rest. 
Physiologically, these differences could stem from variations in cardiovascular fitness, stress levels, sleep quality, and 
overall autonomic regulation. Individuals with higher RMSSD values at rest are typically better equipped to handle 
physical and psychological stressors, whereas lower RMSSD values may suggest limited adaptability or higher 
physiological strain. 
 

 
Figure 9 - RMSSD at rest Condition 

 
Figure 10 illustrates the trend of Root Mean Square of Successive Differences (RMSSD) values for five subjects during 
activities with varying movement intensities. RMSSD, an established indicator of parasympathetic nervous system 
dominance, generally decreases as movement intensity increases or when physical fatigue occurs. In this measurement, 
Subject 1 recorded the highest value (97.51 ms), followed by Subject 2 (87.76 ms), indicating strong cardiovascular 
adaptability to physical load. Subject 3 (76.79 ms) and Subject 4 (75.03 ms) exhibited moderate responses, whereas 
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Subject 5 showed the lowest value (67.84 ms), which may reflect reduced parasympathetic dominance during activity. 
When compared with resting conditions, all subjects experienced a reduction in RMSSD—a phenomenon consistent with 
vagal withdrawal and a temporary shift toward sympathetic dominance as cardiovascular demands increase. 
Quantitatively, the absolute and percentage decreases in RMSSD (active – rest) were as follows: Subject 1: −7.52 ms 
(−9.98%), Subject 2: −11.95 ms (−13.47%), Subject 3: −6.18 ms (−6.58%), Subject 4: −8.43 ms (−10.10%), and Subject 
5: −2.25 ms (−2.26%). The largest reduction in Subject 2 suggests high autonomic reactivity or a relatively greater 
perceived workload during activity, while the minimal decrease in Subject 5 indicates an ability to maintain 
parasympathetic tone despite movement. 
 
Such inter-individual variations may be influenced by fitness level, physiological state at the time of measurement, and 
individual adaptation strategies to workload. Given that RMSSD is sensitive to analysis duration, movement artifacts, 
and breathing patterns, repeated measurements and standardized pre-test conditions are recommended to strengthen the 
validity of interpretation. 
 

 
Figure 10 - RMSSD Moving Condition 

 
In Figure 11, the SDNN at rest condition graph illustrates changes in heart rate variability (HRV) for five subjects over 
the measurement period. SDNN (Standard Deviation of NN intervals) reflects the extent of variation between consecutive 
heartbeats, where higher values generally indicate a more relaxed physiological state and better autonomic nervous 
system function. 
 
At the start of the measurement, nearly all subjects exhibited relatively high and fluctuating SDNN values, likely due to 
the body adapting to the testing environment. Subject 1 began at approximately 200 ms and gradually decreased to around 
60 ms by the end. Subject 2 recorded the highest initial SDNN of about 300 ms, which slowly declined to around 110 
ms. Subject 3 started at around 80 ms and quickly stabilized at approximately 40 ms. Subject 4 began at about 120 ms 
and maintained a mid-range value of 80–100 ms throughout. Subject 5 also had a high initial value of around 300 ms, 
which gradually decreased to about 100 ms. 
 
Over time, SDNN values for most subjects decreased and stabilized, indicating that the body had reached a steady rest 
condition. Subjects 2 and 5 maintained relatively high SDNN values until the end, suggesting good relaxation levels and 
healthy autonomic regulation. In contrast, Subject 3 had the lowest SDNN values, which may indicate a rapid relaxation 
response but with lower heart rate variability. These differences highlight individual variations in physiological response 
even under the same resting conditions. 
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Figure 11 - SDNN at Rest Condition 

 
In Figure 12, the SDNN graph under moving conditions shows the changes in heart rate variability (HRV) for five 
subjects throughout the measurement period. Similar to the resting condition, SDNN (Standard Deviation of NN 
intervals) reflects the degree of variation between consecutive heartbeats; however, under moving conditions, the values 
are also influenced by increased physical activity and the autonomic nervous system’s response to the body’s workload. 
At the beginning of the measurement, Subject 2 recorded the highest value at around 320 ms, which then gradually 
decreased to approximately 120 ms by the end, indicating the ability to maintain heart rate variability despite ongoing 
activity. Subject 1started with a low value of about 50 ms but gradually increased to approximately 150 ms by the end, 
suggesting improved adaptation to physical activity. Subject 3 displayed a pattern similar to Subject 1, starting low at 
around 60 ms and increasing to about 150 ms toward the end. Subject 4 maintained a low value in the range of 50–70 ms 
throughout the measurement, which may indicate a lower parasympathetic response or sympathetic dominance during 
movement. Subject 5 also started with a low value and gradually increased to around 150 ms by the end. 
 
Overall, this pattern shows that some subjects (1, 3, and 5) experienced an increase in SDNN over time while moving, 
indicating good physiological adaptation to activity. In contrast, Subject 4 maintained low SDNN values, while Subject 
2 started with very high values but experienced a gradual decline. These differences suggest that the autonomic nervous 
system’s response to physical activity varies among individuals, influenced by physical condition, fitness level, and the 
body’s adaptation strategies. 
 

 
Figure 12 - SDNN Moving Condition 

 
In Figure 13, the NN50 at rest condition graph shows the cumulative number of heartbeat interval pairs (NN intervals) 
that differ by more than 50 ms for five subjects during the measurement period. NN50 is a time-domain parameter of 
Heart Rate Variability (HRV) closely related to parasympathetic activity; higher values generally indicate better 
autonomic nervous system function and a more relaxed physiological state. 
 
From the graph, Subject 5 recorded the highest value, reaching approximately 120 by the end of the measurement, 
followed by Subject 2 with a final value of around 100. These two subjects demonstrated high heart rate variability during 
rest. Subject 4 showed moderate variability with a final value of about 55, followed by Subject 3 with approximately 35. 
Subject 1 had the lowest value, only around 15 at the end, indicating low heart rate variability during rest. 
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The upward trend in NN50 for most subjects remained relatively consistent over time, suggesting that heartbeat 
fluctuations persisted even under resting conditions. However, the considerable differences between subjects indicate 
individual variations in autonomic nervous system responses, which may be influenced by factors such as cardiovascular 
fitness, stress levels, and lifestyle habits. 
 

 
Figure 13 - NN50 at Rest Condition 

In Figure 14, the NN50 moving condition graph shows the cumulative number of heartbeat interval pairs differing by 
more than 50 ms for five subjects while in motion. Since NN50 reflects parasympathetic activity, changes in its values 
during movement can indicate how the autonomic nervous system responds to physical exertion. 

Subject 2 recorded the highest NN50 value, reaching approximately 125 by the end, followed closely by Subject 5 with 
around 110. These results suggest that both subjects maintained relatively high heart rate variability despite physical 
activity, indicating a strong parasympathetic influence or efficient cardiovascular adaptation. Subject 4 showed a 
moderate increase, ending near 80, while Subject 3 peaked around 55 before slightly declining toward the end, possibly 
due to fatigue or reduced parasympathetic activity. Subject 1 exhibited a steady increase throughout, finishing close to 
70. Overall, the data show that most subjects experienced a progressive rise in NN50 during movement, though the rates 
and final values varied significantly. These differences highlight individual variations in physiological adaptation to 
physical activity, potentially influenced by factors such as fitness level, endurance capacity, and autonomic balance. 

 
Figure 14 - NN50 Moving Condition 

 
In Figure 15 – pNN50 at rest condition, the pNN50 values show clear differences among the five subjects. Subject 2 (red) 
starts at a high value of around 70%, maintaining between 50–70% for most of the measurement before gradually declining 
to about 35–40% toward the end. This indicates consistently high heart rate variability during rest. Subject 4 (yellow) 
maintains a moderate level around 25–30% throughout, showing stable parasympathetic activity. Subjects 3 (green) and 1 
(light blue) remain at low values, generally under 15%, with a slight increase toward the end for Subject 1. Subject 5 (dark 
red) follows a similar trend to Subject 2 but with slightly lower values, maintaining between 40–60%. Overall, the data 
suggest that Subject 2 and 5 have the highest variability at rest, Subject 4 has moderate variability, and Subjects 1 and 3 
exhibit lower variability, potentially reflecting differences in baseline autonomic regulation. 
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Figure 15 - pNN50 at rest condition 

 
In Figure 15, during movement, pNN50 values decrease for most subjects compared to rest, as expected due to increased 
sympathetic dominance. Subject 2 maintains the highest values, peaking at around 75% in the early phase and stabilizing 
between 40–55% afterward. Subject 4 stays relatively stable between 25–35%, showing consistent but moderate 
variability. Subject 3 begins near 40% but declines steadily to below 10% by the end, suggesting reduced parasympathetic 
influence with prolonged activity. Subject 5 starts low but rises to around 40–45% mid-session, maintaining this level 
afterward. Subject 1 stays at lower levels initially but gradually increases to around 40% toward the end, indicating a 
delayed adaptive response to movement. In summary, movement reduces variability in most subjects, but the extent of 
reduction varies with Subject 2 maintaining high values throughout, and Subject 3 showing the sharpest decline. 
 

 
Figure 16 - pNN50 Moving Condition 

 
3.3. User Interface Testing 
User interface testing confirmed that the developed ECG application provides clear and informative feedback to users 
through various pop-up notifications. The system successfully issues warning messages when the device is not connected 
and offers easily accessible user guides, complete with electrode placement illustrations and key operational notes. Upon 
completion of measurements, the application generates a diagnostic pop-up presenting detailed ECG analysis results—
such as heart rate, R-R interval, and VO₂Max, along with user-friendly interpretations. The Start, Stop, Refresh, and Quit 
buttons performed as intended, enabling measurement control, real-time data updates, and safe application termination. 
The application also displays heart rate variability (HRV) parameters, including SDNN, RMSSD, NN50, and pNN50, in 
real time. Furthermore, the Poincaré plot visualization feature operates as expected, offering a visual representation of 
HRV dynamics to support data interpretation. Collectively, these features enhance the usability, reliability, and analytical 
capabilities of the ECG application for physical fitness monitoring and cardiac health assessment, as illustrated in Figure 
17. 
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Figure 17 – User interface system 

 
4. CONCLUSION 
Testing of the ECG monitoring system based on the AD8232 sensor and Arduino Nano on five subjects (aged 20–22 
years) demonstrated its ability to acquire and analyze HRV parameters in real time with stable operation for over 40 
minutes. The average heart rate (HR) increased from rest to activity by 6.56% ± 4.8%, with the largest increase in Subject 
1 (+12.09%) and the smallest in Subject 3 (+0.93%). Resting RMSSD values ranged from 75.36–99.76 ms and decreased 
by an average of 6.21% ± 4.7% during activity, with the greatest drop in Subject 2 (−13.47%) and the smallest in Subject 
5 (−2.26%). Resting SDNN values ranged from 62.18–131.88 ms, with Subject 2 showing an increase during activity 
(122.33→129.06 ms) and Subject 5 showing a significant decrease (131.88→88.48 ms). At rest, NN50 reached a 
maximum of 124 counts (pNN50=77.78%) and a minimum of 23 counts (pNN50=27%), with an average pNN50 
reduction of −18.42% ± 21.5% during activity; the largest drop occurred in Subject 5 (−54.64%), while Subject 1 showed 
an increase (+26.07%). VO₂Max values were highest in Subject 2 (39.90 ml/kg/min, excellent) and lowest in Subject 3 
(29.98 ml/kg/min, poor). These results confirm that the system can quantitatively differentiate physiological responses 
between individuals, where those with higher VO₂Max tend to have greater HRV and more controlled parasympathetic 
reduction during activity, while those with lower VO₂Max exhibit lower HRV, higher resting HR, and a sharp decline in 
pNN50 when moving. Furthermore, the observed patterns reinforce the potential of the proposed system to provide 
meaningful insights into individual cardiovascular fitness and autonomic regulation during exercise. 
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