T., Lin, P., Goyal, R., Girshick, K., He and P. Dollar. 2017. Focal Loss for Dense Object
Detection. Venice, Italy. IEEE International Conference on Computer Vision (ICCV).
Utomo, Syam Suryo, Cahyanto, Triawan Adi, and Prakoso, Bakhtiar Hadi. 2020. Penggunaan
Algoritma Random Over Sampling Untuk Mengatasi Masalah Imbalance Data Pada
Klasifikasi Gizi Balita. Jember, Indonesia. Universitas Muhammadiyah Jember.
Kumar, Benai. 2020. 10 Techniques to deal with Imbalanced Classes in Machine Learning.
[Online] Available at https://www.analyticsvidhya.com/blog/2020/07/10-techniques-to-dealwith-class-imbalance-in-machine-learning/ [accessed on November 28th, 2021].
Potyraj, Emily. 2021. 4 Ways to Improve Class Imbalance for Image Data. [Online] Available
at https://towardsdatascience.com/4-ways-to-improve-class-imbalance-for-image-data-
adec8f390f1 [accessed on November 29
th, 2021].
Google Developers. 2017. Imbalanced Data. [Online] Available at
https://developers.google.com/machine-learning/data-prep/construct/samplingsplitting/imbalanced-data [accessed on December 5
th, 2021].
Brems, Matt. 2020. 5 Strategies for Handling Unbalanced Classes. [Online] Available at
https://blog.roboflow.com/handling-unbalanced-classes/ [accessed on December 5
th, 2021].
Sakaridis, Christos, Dai, Dengxin, and Van Gool, Luc. 2018. Semantic Foggy Scene
Understanding with Synthetic Data. International Journal of Computer Vision. Springer
Science and Business Media LLC.
Cordts, M., Omran, M., Ramos, S., Rehfeld, et al. (2016). The Cityscapes Dataset for Semantic
Urban Scene Understanding. In Proc. of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR).
Hui, Jonathan. 2018. mAP (mean Average Precision) for Object Detection. [Online] Available
at https://jonathan-hui.medium.com/map-mean-average-precision-for-object-detection-
c121a31173 [accessed on December 22nd, 2021].
Everingham, M., Van Gool, L., Williams, C., Winn, J., and Zisserman, A. 2012. The PASCAL
Visual Object Classes Challenge 2012 (VOC2012). http://www.pascalnetwork.org/challenges/VOC/voc2012/workshop/index.html
Tan, M., Pang, R., and Le, Q.V. 2020. EfficientDet: Scalable and Efficient Object Detection.
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).
Yu, Hongkun, Chen, Chen, Du, Xianzhi, Li, Yeqing, et al. (2020). TensorFlow Model Garden.
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Notice
An author who publishes in the Jurnal Elektro dan Telekomunikasi Terapan agrees to the following terms:
Read more about the Creative Commons Attribution-NonCommercial 4.0 International License. here: http://creativecommons.org/licenses/by-nc/4.0/.
Privacy Statement
The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.