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Abstract

In the following research, we derive a detector which is based on sequential probability ratio test (SPRT)
and it uses Energy Detector (ED) which is followed by Cyclostationary Feature Detector (CFD). ED is a
blind sensing technique and it is easy to implement while conceptually simple. However, it is highly
affected by interference and noise uncertainties. Therefore, CFD is applied for fine sensing as research
has shown that Cyclostationary Feature Detector is more suitable than the energy detection when noise
uncertainties are unknown. Our method is novel in trying to derive a sequential Energy Detector and
combine it with Cyclostationary Feature Detector for low SNR region where average sample number
(ASN) as a random variable may take very high value to achieve a desired performance level for
sequential Energy Detector. For this sequential Energy Detector is terminated after it reaches certain cut-
off sample number, making it truncated sequential Energy Detector.
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Opportunistic Spectrum Access (OSA) has been
proposed as a solution for present problem of
spectrum scarcity and the new spectrum policy is
called Dynamic Spectrum Allocation (DSA) policy,
whereby the secondary or non-licensed users can

1. Introduction

Increasing number of applications and wireless
devices have increased demand for radio spectrum
and they are leading to the problem of spectrum
scarcity. Recent research has shown that most of the
available
completely idle which can be seen in a particular
figure 1. Federal
Commission (FCC) published a report prepared by
Spectrum Policy Task Force in November 2002,
which reports that [1]: In many bands, spectrum
access is a more significant problem than physical
scarcity of spectrum, in large part due to legacy
command-and-control regulation that limits the

sense the frequency bands and if it is found that the
bands are not being used at that particular time, they
start communicating using those bands. This
characteristically, is a feature of Cognitive Radio [2]
that is touted as a revolution in the future of wireless
which attempts at Dynamic

spectrum is either underutilized or

case 1In Communications

communication
Spectrum Allocation.

The name mostly refers to spectrum aware
communication systems. It is defined as Software

ability of potential spectrum users to obtain such
access. The case of spectrum underutilization can be
improved if a secondary user can access the unused
licensed spectrum bands during a certain temporal
frame of time in which it is unoccupied. Therefore,
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Defined Radio which is aware of its environment, it
learns from and has the ability to change its
parameters according to these changes in its
environment and the network requirements [3].
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Fig. 1. A Snapshot of the spectrum utilization up to 6 GHz
in an urban area [16]

The term cognitive radio (CR) refers to a radio
that is aware of its surrounding environment and it
can intelligently access the unused spectrum bands
thereby increasing the communication capacity and
efficiency. Once such empty spaces are found, it is
possible for secondary users who do not hold license
or right to the frequency band. Hence, for the
efficient use of spectrum the first step is to sense
whether the spectrum is being used by primary users
or not. One of the most important cognitive features
of the cognitive radio standard is spectrum sensing
which senses the white spaces or channels void of
primary users in the available frequency spectrum.
Spectrum sensing has been viewed as a signal
detection problem whereby spectrum sensors detect
the presence of primary user signals. Most of the
spectrum sensing algorithms are based on sample
size and sensing time which are predetermined and
fixed. In contrast, Wald proposed that a detector
based on sequential detection requires less average
sensing time in comparison to a fixed sample size
detector. In paper [4], the authors propose an
intelligent spectrum sensing scheme which improves
the utilization efficiency of the radio spectrum by
increasing detection reliability and decreasing
sensing time. The scheme chooses either the
combined energy and cyclostationary detector or the
matched filter detection depending upon the
suitability. In this paper [5], the authors maintain that
Cyclostationary Feature Detector is a good method
for PU detection in cognitive radio systems but long
detection time leads to spectrum
utilization. They propose to apply sequential analysis
to the Cyclostationary Feature Detector to improve
on sensing delay. In paper [6], the authors propose an
Energy Detector based on sequential probability ratio

inefficient

test to reduce the average required sample number
and sensing time for spectrum sensing in lowsignal-
to-noise ratio regime. Data samples are grouped into
blocks and the sequential probability ratio test uses
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energy of the block as test statistic. In [7], the authors
propose a two-stage spectrum sensing where coarse
sensing is performed by Energy Detector and fine
sensing is performed by Cyclostationary Feature
Detector. Threshold parameters are derived in such a
way as to maximize the probability of detection
under constraints on probability of false alarm. We
propose a detector which is based on Sequential
Probability Ratio Test (SPRT) and uses combined
energy as well as Cyclostationary Feature Detector.
Sequential analysis will decrease the sensing time
which carries a huge significance in spectrum
sensing. Energy Detector as a non-coherent detection
method does not require any prior knowledge of a
PUs waveform and so is easy to implement, however
it is highly affected by interference and noise
uncertainties [8]. Therefore, Cyclostationary Feature
Detector is applied for a reliable sensing accuracy in
low SNR as the researches have shown that
Cyclostationary Feature Detector is more suitable
than the energy detection when the noise
uncertainties are unknown [9]. In general, test
statistic is calculated using SPRT for Energy
Detector, terminated after the sample number for the
test reaches certain predetermined value and further
analyzed using Cyclostationary Feature Detector to
perform the task of sensing presence of primary user
signals. Combined spectrum sensing technique of ED
and CFD has been used to obtain better results with
less mean detection time [4]. Our method is novel in
trying to derive a sequential Energy Detector and
combine it with Cyclostationary Feature Detector for
low SNR region where average sample number
(ASN) as a random variable may take very high
value to achieve a desired performance level for
sequential Energy Detector. For this sequential
Energy Detector is terminated afier it reaches certain
cut-off sample number, making it
sequential Energy Detector.

truncated

Decision whether a channel is free or not is
based on the result of a binary hypothesis testing
experiment [9]. In signal detection, the task is to
decide whether observation were generated under
nmull or alternative hypothesis [10]. This binary
hypothesis testing problem in spectrum sensing is
formulated as a decision between two hypotheses HO
and H1, where HO is the null hypothesis and H1 is
the alternative hypothesis. If the decision is HO
hypothesis then it means the absence of primary user
signal. However, H1 decision means the presence of
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primary user signal in the spectrum. Hypotheses can
be formulated as:

H, : y[n]=wln] (1)
H, :y[n]=s[n]+wn] (2)

where h is the channel gain, x[n] is the primary
signal and w[n] is the additive noise. The detector
collects the received samples, builds a test statistic
and compares it against predefined thresholds.

A. Detection Problem

Probability of False Alarm (PF A): The decision
is made on presence of primary user signal when the
spectrum band is actually unoccupied.

vy =P(>A|Hy))=Pu=1|H,) 3)

Probability of Miss Detection (PMD): the decision is
made on absence or primary user signal when the
frequency band is actually occupied.

By =P<A|H)=Pu=0|H,) (4)

Probability of Detection (PD): The decision is made
on presence of primary user signal when the
frequency band is actually occupied.

B, =1-B, =Pu=1|H,) (5)

2. Detector
2.1 Energy Detector

This is the simplest form of spectrum sensing
and this detector decides whether the primary signal
is resent based on comparison of measured energy
against a given threshold and whether it exceeds that
threshold. The predetermined threshold is highly
susceptible to the noise floor, in-band interferences,
and channel notches caused by frequency selective
fading. The decision metric, Y, is built from a
sequence of N received signal samples:

1 N-1

YZEZV

J
n=0

2

(6)

n

iid random
Gaussian process with zero mean and variance 2/n.

We assume noise to be an

VOL. 2 NO. 1, 2016

The primary users signal is considered to be an i.i.d
random process with zero mean and variance 2/s.

H, : y[n]=wn] (7)
H, : y[n] = s[n]+w[n] (8)
where n = 0,1.N-1 For Neyman Pearson

detector, it decides the alternative hypothesis f1; if

the likelihood ratio exceeds the value of
predetermined threshold.
p(y;H))
L(y)= —[ > A 9)
p(y;H,)

Likelihood ratio can be further given as

! €x] ! " [n]’
bricr 5] 2 5 2 | 10)
T
N &% Zn Oy[ i|
[271'(0';:‘)]3 2(o, u)

If we take the log-likelihood ratio we get

e
"2 2ol ) 2lolol +

Hence the decision is A, if

L(y)=

5 Niv[n]} an

iZN—ly[n]z >

n=0

T(y)= (12)

The test statistic T(y) for large number of
samples can be modeled by a Gaussian distribution

as follows [11], T(y)~ N(c>,(2c))/ N)under Hy

n

and T(y)~ N((o. +07),2(c. +0.)*/ N) under H;.
Probability of false alarm Pr, is given by [12]

A N
Py =0 [?“IJ\/;

n

(13)

where O is the complementary distribution
function of the standard Gaussian, A is the threshold
and N is the number of samples. For predetermined
values of Prs and Pp the required number of samples
to achieve such performance level is given by [12].

=%[Q-‘(PFA)—Q"(PD)@/H)]Z (14)

where y is the SNR of the received signal.
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2.2 Cyckistationary Feature Detector

If a signal is not completely known but some of
its features are known then we can use the
Cyclostationary Feature Detector approach to detect
the presence of primary user signal. Generally,
modulated signals exhibit some form of periodicity
which means that signal is not completely stationary
but cyclostationary. However, the additive noise is
considered to be stationary and hence this difference
in between signal of interest and noise can be used to
detect the presence of a signal of interest. This
technique works very well even during the low SNR
and is not hampered by the noise uncertainty unlike
in the case of Energy Detector. Sometimes it is easier
to analyze signals in the frequency domain than in
the time domain. Analyzing signals in the frequency
domain lets us to detect the presence or absence of
signals during the process of spectrum sensing. As
we have already mentioned about the cyclic
autocorrelation function now we can mention that
spectral correlation density is the Fourier transform
of CAF. The SCD is given by

()= R (2)e >t (1)

for a continuous signal and x(z) and by

S*(f)= L :,, Rkt (16)

for a discrete signal x/n].

2.3 Sequential Probability Ratio Test

Individual detectors have fixed sample sizes.
However, new hypotheses tests have been proposed
which do not use fixed sample size which on average
need a smaller sample sizes to achieve the same PD
and PF A. These include the sequential test proposed
by A. Wald [15]. The sensing time is a random
variable, which on average is less than that for the
fixed sample detector for the same performance.
Performance evaluation of Sequential detection can
be done in terms of Average sample Number (ASN),
which is the number of samples on average required
to make a decision at a given level of accuracy
during a binary hypothesis testing [13].

The ASN function is the expected value of
random stopping time N s of the SPRT when the
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underlying distribution is f(y/n/; 6), 8 € ©. By using
the same argument that the increment under z under

fvn; 0) is very small compared to A — B, the ASN

function can be approximated by [14]

_(1=e")ar e 1))
E,[N]= (@ =e")E, =) (17)

where, Ey denotes the expected value under

f(x[n]; 8) and z denotes the increment per sample.

The ASN under Hy and H; can be found from above
equation by substituting t = 1 and t = -1, respectively
[15]. The increment z using the distribution shown
above and in [11] for the ny sample Y, can be given
as

1 L 1 2y 2y | (18
z=hlm—a[m(}’”—(l+y)a”)'—(l’"—o’")’} (18)

where L is the number of received samples that
is used to calculate the test statistic for the sequential
Energy Detector. Main purpose of using sequential
Energy Detector over using Energy Detector is
because of its advantage in lowering average number
of samples required for the detector to achieve a
given performance level. However, ASN of SED is a
random variable and especially in the low SNR
region it requires higher number of samples.
Moreover, as SED is based in conventional Energy
Detector it is prone to noise uncertainties and in-band
interference in the low SNR region. Hence, we
propose CFD as the second stage of sensing for the
low SNR values. Analytically, we can determine the
sample number that is acceptable to us at a particular
SNR value and we can switch to the CFD when the
decision 1s still not made between the null and
alternative hypothesis.

2.4. Truncated Sequential Energy Detector

The reason for applying sequential test to the
binary hypothesis testing problem is to save the
detection time and lower the number of samples that
is required to come to a decision. Average sample
numbers for sequential testing can be very large
especially at the lower SNR region and stringent
constraint. To save ourselves from high detection
time which is directly proportional to the sample
numbers required to come to a decision, we choose
another criterion for termination of the test. We take
a reasonable predetermined cut-off sample number
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and if the detector cannot make the decision until
even when the cut-off sample number is reached we
terminate the sequential testing and move forward to
the use of Cyclostationary Feature Detector. This
method of sequential testing is called truncated
sequential testing and hence the sequential Energy
Detector can also be called as truncated sequential
Energy Detector in such condition. Probability of
detection for the combined detector is given by [21]
as

P, =P +(1-B5 )RS (19)

And probability of false alarm for the combined
detector is given by [21] as

Pr :P;A“'(I_Pfgk F{T (20)

where, Pp is the overall probability of detection,
Pr4 is the overall probability of false alarm, Prs and
Pp° are the probabilities of false alarm and detection
for coarse sensing respectively and Pr/ and Py are
the probabilities of false alarm and detection for
coarse sensing respectively.

3. Simulation and Results

Digitally modulated QPSK signal is considered
to be the signal of interest. In figures 2 and 3, we
compare the required number of sample numbers for
both ED and SED. In both cases we can see that the
numbers of samples required to attain a given
performance level is lower in the case of Sequential
Testing based Energy Detector than in individual
detector which in our case is Energy Detector. We
consider two cases: firstly, with predetermined
values of Prs and Pyp as 0.01 and secondly, with the
values as 0.05. For, the case of Pry and Pyp both
equal to 0.01 we can see that the average number of
samples is more than halved.

ASN for ED and SED
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Fig. 2. ASN for different values of SNR for SED and ED,
Pra=Pup=0.01
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Fig. 4. Performance comparison of truncated SED and
Combined Detector
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Fig. 5. Performance comparison of truncated SED and
Combined Detector

In figure 4 and 5, we show that using combined
detectors as proposed we can improve the
performance over sequential Energy Detector. For
the simulation we use the cut-off sample number for
SED as 5000 and if the detector cannot detect the
presence of signal in that condition we move forward
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to Cyclostationary Feature Detector. We have taken
two different target constraints. From the experiment
we can see that there has been increase in the
performance of the combined detector than when
only using one detector.

4. Conclusions

In this thesis, our work has been to focus on
reducing the sensing time in a CR system using
sequential detection. Our sequential detection is
based on Energy Detector and we further analyze the
signal using Cyclostationary Feature Detector. By
using sequential Energy Detector we have compared
it to traditional Energy Detector to show that the

average sample number decreases in the formers case.

Also we have shown that using combined detectors
as proposed we can improve the performance over
sequential Energy Detector. For the simulation we
the cut-off sample number for SED as 5000 and if the
detector cannot detect the presence of signal in that
condition, we move forward to Cyclostationary
Feature Detector. There are many areas that might be
useful for further research. We may consider
performance evaluation of the proposed detectors in
different kinds of fading channels like log-normal
shadowing channel and Rayleigh fading channel.
One might consider using sequential probability ratio
test for cyclostationary spectrum sensing as well.
And we hope that better to have truncated sequential
Energy Detector before analyzing the received signal
with Cyclostationary Feature Detector. Furthermore,
collaborative spectrum sensing can be used after the
individual combined detectors to solve the problem
like hidden terminal and it will also increase the
sensing accuracy.
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