JURNAL PENELITIAN INFORMATIKA

RESEARCH ARTICLE

LOGIC: Jurnal Penelitian Informatika
Vol. 3, Issue 2, pp. 68-75 (2025)
doi: http:/doi.org/10.25124/logic.v3i2.6467

Layer-4 Load Balancer on Programmable Data Plane using IP Hash

and Weighted Round Robin

Muchlis Ramadhan Usman, Muhammad Arief Nugroho* and Ibnu Asror

Fakultas Informatika, Universitas Telkom, Bandung, 40257, Jawa Barat, Indonesia
*Corresponding author: arif.nugroho@telkomuniversity.ac.id

Abstrak

Layer-4 load balancer used in data center to distribute requests coming from client to multiple servers located in data
center. There are two requirements to build proper Layer- 4 load balancing. The first is ensuring the uniformity of request
distribution across multiple servers and connection affinity. IP Hash is a common load balancing algorithm that is used
to implement Layer-4 load balancing but can cause load imbalances across multiple servers. Weighted Round-Robin is
proposed to prevent load imbalance across multiple servers. The implementation of load balacing is using a programmable
data plane rather than additional hardware or software load balancing. The result shows that WRR is able to mitigate load
imblance across multiple servers by achieving uniform request distribution. WRR achieves 13% higher throughput but gives
2% higher response times than IP Hash and has less packet loss than IP Hash when handling HTTP requests.

Key words: keyword Layer-4, Load Balancer, Connection Affinity, IP Hash, Weighted Round Robin, Data Plane.

Introduction

In the data center there are multiple servers operated to handle large
requests from clients. To manage this request load balancing is needed
[1]. Layer-4 load balancer can be used to distribute requests across
multiple servers. Layer-4 load balancing makes the request load bala-
ncing decision based on information in Layer-4 that is transport layer
[2]. Layer-4 in this study refers to the fourth layer of the Open System
Interconnection System (OSI). Layer-4 Load Balancer sending a requ-
est to corresponding server by using 5-tupple information of such as
IP Address Source, IP Address Destination, Port Source, Port Desti-
nation, and Transport protocol to determine the server to handle the
request coming from client [2]. To build proper Layer-4 Load balancer
there are two requirements that need to be met [3] [4]. First is uniformly
distributing requests from clients to servers in the data center. Second
is ensuring packet forward to the same server from the first packet forw-
arded to establish a session until the last packet to close a session from
client to server or called connection-affinity.

The first requirement that is uniformly distributing the packet is
important to split large requests coming from clients and distribute to
multiple servers located in a data center to prevent load imbalance. The
second requirement is ensuring Connection-affinity [4] [5]. This concept
is achieved when the set of packets to establish a session or called flow
sent consistently to the same server until the last packet to close the
session and not send it to different server. The purpose of ensuring
Connection-affinity is to prevent request failure. The IP Hash algorithm
is used in load balancing systems such as Hardware, Software, and

Software Defined Network. The IP Hash algorithm is used for Layer-4
Load Balancing in data centers because of algorithm capability in distri-
buting request across multiple servers and ensure connection affinity
[6]117]8].

Problem statement

However, IP Hash load balancing suffers from load imbalance [3]. IP
Hash relies only on hash calculation to determine server index, this can
lead to load imbalance. To mitigate IP Hash Problem WRR algorithm
is proposed. The WRR algorithm works by distributing the request in
turn for each server but also takes consideration of server capability in
handling n number of requests from client [9]. By taking consideration of
server capability in handling request, WRR can mitigate load imbalance
cause by IP Hash that only depend on hash function to determine server
index.

Purpose

WRR is scheduling algorithm that derives from Round-Robin algorithm,
In Round robin the request is forwarded to the server in turn starting
from the first server in index to the last server in index. WRR is similar
to Round Robin, but the difference in WRR is the weight is assigned
to the servers [5]. The Weight is determined by network administrator
after observing the capability of servers in handling request, such as link
bandwidth from load balancer to the server and/or server specification.
To maintain connection affinity in WRR algorithm, Hash function from IP

© The Author 2025. Published by Telkom University.

68

email:email-id.com

Table 1. Cited paper

Layer-4 Load Balancer... | 69

No
Title Cheetah: A High-Speed Programmable Load-Balancer Framework With Guaranteed Per-ConnectionConsistency [3]
Method Stateful Cheetah load balancer Stateless Cheetah load balancer
1 Result Have comparable outcome performance and have 3.5 x cycles per packet less than state of the art load balancing
Relevance Raise similar problem statement, state that hash mechanism load balance cause imbalance in data center Use P4
language to implement load balancing
Title Analisis Performansi Load Balancing menggunakan Algoritma Round Robin dan Weighted Round Robin pada P4
Programmable Switch [13]
Method Round Robin algorithm Weighted Round Robin algorithm
2 Result As shown Weighted Round Robin algorithm perform better that Round
Robin in term of QoS parameter like Throughput, Jitter and latency
Relevance Use P4 language to realize the load balancing system
Use Weighted Round Robin algorithm
Title Increasing SDN Network Performance using Load Balancing Scheme on Web Server [8]
Method IP Hash algorithm
Least Connection IP algorithm
3 Result IP Hash 17% more optimal than Least Connection Algorithm
Relevance The algorithm used in the paper is IP hash algorithm.
IP Hash algorithm is used to maintain connection affinity
The implementation of load balancing is in context of Software Defined Network using OpenFlow API, which
dependent on the control plane
Title Analysis of Load Balancing Performance using Round Robin and IP Hash Algorithm on P4 [14]
Method IP Hash algorithm
Round Robin algorithm
4 Result Round Robin gives better results of fairness index. For throughput the result is comparable between the two
algorithms, while the response time parameter result is very contrast in comparison, IP Hash is 12, 6 ms
and Round Robin is 3, 31 ms
Relevance Implementation of algorithm load balance in data plane is the same using IP Hash algorithm
Title SilkRoad: Making Stateful Layer-4 Load Balancing Fast and Cheap Using Switching ASICs [15]
Method Hashing method to reduce memmory usage
5 Table to store connection state
Result Shows that a programmable swith asic able to replace thousand of software load balancer
Relevance Use P4 programming language to implement load balancing in programmable switch

Hash is used and combined with WRR Algorithm. Implementation of IP
Hash and WRR algorithms can be done in hardware, software, or SDN
load balancing using F5 hardware, NGINX software, or Openflow Pro-
tocol for software-defined networks [6] [8] [10]. But recently there is an
emerging paradigm that is Programmable Data Plane. Programmable
data plane is a concept that allows programmability of packet proces-
sing network directly in data plane [11]. With this concept load balancing
can be applied directly in programmable switch without the need for
middleware. IP Hash and WRR algorithm can be implemented directly
in Programmable switch using P4 (Programming Protocol-independent
Packet Processors) [12] programing language. In this study WRR is
proposed to mitigate load imbalance caused by IP Hash algorithm. By
using WRR, each server will be assigned weight to prevent load imba-
lance. Implementation of IP Hash and WRR will be implemented using
P4 programming language in BMv2 programmable switch.

Related Study

This section covers some of related the study conduct in context of
Layer-4 load balance. The related study of this paper is presented in
the form of a table. In Table 1 consists of Title of the paper, method
used in the paper, result of the paper, and the relevance of paper cited
with the author paper.

Layer-4 Load balancing in data center

Layer-4 Load balancing in multi-tier data center architecture is located in
between router and backend server [3]. Is figure 1 shows the traditional
data center load balancing architecture. The architecture is organized
in 3 different tiers, the 1st tier consists of BGP Router using ECMP.
The second tier is the layer4 Load balancer that will be the focus of this
study. And the Third tier is Layer-7 load balancer that operates in the
application layer. Request coming from client to specific service in data
center is correspond to Virtual IP (VIP). Multiple servers that provide
the service in data center are identified with Direct IP Address (DIP)

70 | M.R.Usman etal.

Datacenter
incoming
request for
VIPi
i o BGP Routers
‘ isttier LB ‘ s ‘ 1sttier LB using ECMP
h >< : \ 4
‘ 2nd tier LB ‘ 2nd tier LB Layer-4 Load
- Balancer
server 1 server k Layer-7 Load
o Balancer
DIP 1 DIPk

Gambear 1. Traditional data center load balancer architecture

Gambar 2. Traditional Layer-4 Load Balancing

Gambar 3. Programmable data plane load balancing using programmable switch

with unique IP Address as identifier for each back-end server. Each
DIPs are associated with a VIP to represent as one services.

1.Traditional Layer- 4 Load Balancing
Implementation load balancing in data center using Hardware or Sof-
tware load balancing is place in between switch and back-end server.
As shown in figure 2, additional hardware or software is used for

load balancing. This can add additional delay when handling requ-
ests from client to server. Implementing load balancing system in
programmable switch can remove the need for additional load bala-
ncing hardware or software. As shown in figure 3, when the request
comes from client through internet it directly goes to switch, and the
packet processing will be performed in the programmable switch.
This resulting in reduction of cost in provisioning additional hardw-
are or software load balancing and increase the Throughput and
Response time because the packet is get processed in line rate [15].

Layer-4 load balancing.

Multiple servers that are in data center being advertised to outside world
by virtual IP address (VIP). This can be achieved by leverage layer-4
load balancer by mapping the direct IP address (DIP) to load balancer.
Layer-4 load balancer distribute the packet from clients to multiple in
data center and balance the load across the server [15].

1.Uniformly distribute request
Uniformly distributing requests across multiple servers located in
data center is important because it can prevent a server from getting
overload or underload. When a server is not overloaded or underlo-
aded it can give best overall performance such as High Throughtput,
low response time and avoid request failure.

2.Ensuring Connection Affinity
When a new connection is established to a server the subsequent
packet needs to be sent to same server as first establish packet,
this called connection affinity [16]. Connection affinity is required to
build a layer- 4 load balancing ensuring that connection sessions
are maintained during requesting service and not get terminated and
reset.

IP Hash

In load balancing systems like hardware, software, and software-
defined networks [6] [7] [8]. The IP hash algorithm is used because
the IP Hash algorithm can distribute requests among several servers in
a data center and guarantee connection affinity. It is utilized for Layer4
Load Balancing in data centers. To create the hash value, IP Hash takes
5 -tuples information such IP Address Destination, IP Address Source,
TCP Port Destination, TCP Port Source, and Transport Protocol. Since
the hash value produced from the five-tuple information will remain con-
stant for each packet of a flow arriving from the client, it will be utilized
to guarantee connection affinity.

WRR

The Round-Robin method is the source of the WRR scheduling algori-
thm. In Round-Robin, requests are sent to each server in turn, starting
with the first server in the index and ending with the last server in
the index. WRR and Round Robin are similar, WRR differs is that the
servers are given a weight [5]. After assessing the server capabilities to
handle requests.

Programmable data plane

Programmable Data Plane is a concept that allows for direct program-
ming of data plane hardware or software to customize network device
forwarding behavior [17]. Historically, frmware determined data plane
behavior, but with SDN popularity, data plane programmability is crucial
for adapting network designs to changing traffic patterns, application
needs, and security risks.

Programmable Switch

A network switch with customizable packet processing operations is cal-
led a programmable switch in a programmable data plane [2]. Network

Gambar 4. Topology

operators and developers can build and implement their own packet
processing logic using programmable switches, in contrast to stan-
dard switches that have fixed functions and protocols hardcoded by
suppliers.

Programming protocol-independent packet processors (P4)

P4 is a programming language that is specifically used to program data
planes. By using P4 the network operator can implement additional
functionality and packet processing to the switch. It has the ability to
define packet header and match action for each packet that traverse
the switch 18.

System Design
Topology

The topology system used for this study is shown in figure 4, the client
will make HTTP request from the internet to load balancer IP Address
(VIP Address) that represent as single service. In this case the load
balancer is. Programmable Switch that is BMv2 Switch.Behind VIP
Address is consisting of multiple servers to handle the request. The
multiple servers are identified with unique IP address (DIP Address)
that will be chosen by load balancer to handling the request from client.
3 Server used in this study based on data center topology. Usually, data
centers employ multiple servers for applications that will be used by the
client [19]. Also to analyze the load distribution and the fairness of the
load balancing system algorithm.

IP Hash load balancing

IP Hash load balancing works on programmable data plane by parsing
the packet header first and examine the field of the packet. In packet
header there are 5 tuple information that is IP Source, IP Destination,
Port Source, Port Destination, And transport Protocol. Transport proto-
col particularly TCP is checked if it is new connection or not. This can
be done by looking at TCP flag and checking whether it is SYN flag.
If it is @ new connection the P4 program will assign the connection to
the server. To assign new connections to the server, the Hash algori-
thm is used to generate hash value. The parameter used to generate
hash value is 5 -tuple information. The next following packet after the
first TCP packet always be the same thus the hash value generated will
remain the same. Therefore, the connection affinity can be guaranteed.
In figure 5 shows how IP Hash algorithm mechanism. Starting when
a request comes from client then the TCP/IP protocol header is used

Layer-4 Load Balancer... | 71

Regquest from
client

Hash TCP/IP 5
uple to determine
the server index
and ensure
iconnection affinity

Forward to server
index i based one
the hash value

Finish

Gambar 5. IP Hash mechanism

for Hash parameters. Hash value generated will be used to maintain
connection affinity and to determine server index.

Weighted round robin load balancing

To achieve efficient load balancing system WRR distribute packet to
server from client based on determined weight set by network admini-
strator [5]. The parameter to determine server weight. This way can
help take consideration of varying resource of server and enhance
system performance. In Figure 6 shows WRR algorithm mechanism,
starting by assigning server weight. The weight is considered based on
network administrator after observing the server specification, such as
CPU, memory, link bandwidth from switch to server, etc. When requ-
est comes from client, the packet get process directly by programmable
switch based on the P4 code and algorithm that have been deployed in
programmable switch. P4 code algorithm that executed in the program-
mable switch check whether the request exceed server index i weight,
if not send to server index i, and if the request is already exceed server
index i weight the request get send to server index i+1.

Block diagram of system implementation

This section describes the step by step in applying network load
balancing system in virtual environments In Figure 7 show how load
balancing system using P4 language set up in virtual environment.

1.Install virtualbox on host machine, then install ubuntu in virtualbox
2.Install P4 development [1] tools in ubuntu

72 | M.R.Usman etal.

Forward to server

10

Assign server
weight

Is request < weight
server index i

Send request to
server index i

H

Request from
client

Send reqest to
server index i+ 1

F

Hash 5-tuple for
connection-affinity

|

Gambar 6. Weight Round-Robin mechanism

Writing IP Hash
and WRR
aigorithm in P4 [€7]

language

—

Compile P4
program

Simulate load
balancing in
Mininet

Ho)

Install virtualbox
on host machine
and ubuntu in
virtualbox

5

Routing table
accepted

1

Installing open Yes

source P4
[development toolg| e

Creating topology

i

Creating routing
table logic

Gambar 7. Block diagram of system implementation

Table 2. Hardware specifications

No Hardware Description
1 CPU Intel i7 8750
2 GPU NVIDIA GTX 1060
3 RAM 24 GB DDR4
4 Storage 118 GB SSD + 256
SSD

3.Creating topology of load balancing system using mininet python API

4.Writing IP Hash and WRR algorithm in P4 language

5.Compile P4 source code using P4 compiler

6.Creating routing table logic and configure the routing table logic in
BMv2 switch

7.Simulate the load balancing system in mininet

Table 3. Software specifications

No Software Description

1 Operating Ubuntu 22.04

system
P4 development tool
Tools BMv2 Switch
Mininet

Apache bench

Table 4. Throughput standarization

Throughput Throughput Index
Category
Bad 0 — 338kbps 0
Poor 338-700 kbps 1
Fair 700-1200 kbps 2
Good 1200 kbps - 2,1 Mbps 3
Excelent 2,1 Mbps 4
Table 5. Response time standarization
Response Delay

time category

Excelent < 150 ms

Good 150 ms — 300 ms

Fair 300 ms — 450 ms

Poor > 450 ms

8.1f routing table logic accepted by BMv2 switch, then load balancing is
ready to conduct the performance test

System specifications

The hardware and software that will be used to build load bala-
ncing systems listed in table 2 and 3 to conduct the load balancing
performance.

Test parameters

In this section test parameters used for test performance will be explai-
ned. Parameter for Quality of Service (QoS) for test Load Balancing
performance based on standatization [20]. To measure the load imba-
lance in all the servers in the data center, the parameter that will be
used is Request distribution and Fairness index [21].

In this test scenario the parameters conducting performance analysis
based that will be used is listed below:

1.Throughput
Throughput measures the rate of packets that can be sent or recei-
ved through a network in a specific timeframe. Throughput results
reflect the capacity or efficiency of a network. In table 4 shows the
categorization of Throughput qualities.

2.Response time
Latency is used to measure the amount of time it takes from server
to respond request from client. In table 5 shows the categorization of
Response time qualities.

3.Packet loss
To measure the number of packets that failed to be sent to the client.

n 2
(Zifl X'i)
nY i Xf

Gambar 8. Jain fairness index formula

Software:

er Hostname:
Server Port:

Document Path:
Document Length:

Complete reque
Failed requ
Total trar

per
Time per request:
Transfer rate:

Gambar 9. Throughput performance testing

Packet loss during packet transmition to client or server can be cau-
sed by collision and congestion in the network. In table 6 show the
categorization of Packet loss qualities.

4.Request distribution
This metric is used for measuring the number of connections esta-
blished and from client to server. Analyze the packet header such
as TCP SYN flag is captured to analyze the number of connections
established between client and server.

5.Jain fairness index
The Jain fairness index parameter is to measure that every server in
the data center gets fair share of requests coming from client. The
value of the fainess index is from 0 meaning some of the servers get
higher or lower load to 1 meaning that all the servers get equal load.
In figure 8 shows the formula of Jain fairness index.

Test scenario

In this section will be explain how the test performance of load balancing
of both IP Hash and WRR algorithm will be conduct.

1.Throughput and Response Time test scenario
To conduct Throughput and Response time test scenario for load
balancing in performance in Programmable Switch is by using Apa-
che Bench software. In figure 9 shows the command used for test
load balancing performance, the number of reques from 20.000 ,
40.000, 60.000, 80.000 and 100.000 is performed to test load bala-
ncing performance. The amount of request is chosen based on the

Layer-4 Load Balancer... | 73

Gambar 10. Filtering packet loss

+

74 45720 + 8000 [SYN) Seqed Win=37840 Lenet MSS-54
74 45745 - 8000 [SYN] Seqe0 Win=37840 Len=d MSS=54
74 45752 ~ 0000 (SYN] Seqed Wine37840 Lened MSS<54

Gambar 11. Wireshark tool filtering request distribution

amount of request used in data center load balancing to induce load
inbalance in the server [3].

2.Request loss test scenario
To conduct request loss of packet during test performance can be
done by using tool Wireshark, in Wireshark the network interface of
server 1,2 and 3 is captured during request test performance. After
request test performance done, the packet lost during test performa-
nce is observed by using filter function in Wireshark tool. As shown
in figure 10 is the command used to observe how many packets are
lost.

3.Request distribution test scenario
To conduct Request distribution of client generated using Apache
Bench tool to each server running Python Simple HTTP server by
capture first TCP packet when start a connection between client and
server. The first TCP captured during runtime test performance is
TCP SYN, this is because SYN is the first TCP Packet sent to esta-
blish a connection between client and server. In figure 11 shows
Wireshark tool capture first TCP SYN packet of every TCP session
request from client.

Evaluation
Result and analysis of Throughput

To conduct Throughtput performance of load balancing algorithm,
20.000, 40.000, 60.000, 80.000 and 100.000 request is executed.
Throughput performance result between IP Hash and WRR in figure
12 shows that WRR algorithm give higher Throughput performance
with value 13% bigger that IP Hash. WRR uniformly distributes requ-
ests across server resulting in better Throughput performance than IP
Hash. WRR preventing the servers from getting overloaded thus server
can perform more optimal in handling request.

Result and analysis of response time

To conduct response time performance of load balancing algorithm,
20.000, 40.000, 60.000, 80.000 and 100.000 request is executed.
In figure 13 shows that IP Hash perfom better by having 2% less
Response Time than WRR for every request. IP Hash perform better
than WRR because when a request coming from client, Hash value
is used to determine server index, while in WRR needs to check first
wheter a server can accept request based on the weight assing to the
server and then determine server index

74 | M.R.Usman et al.

Throughput
260
247,55 247,31 249,35 25049 249,15
250
240
]
2 230
£ 959 2166 218,1 2169 218,0 2179
B2
210
200
190
20,000 40.000 60.000 80.000 100.000
Request
m]P Hash ®WRR
Gambar 12. Troughput result
Response time
5
4,939 4,944
g 4% 4,903 4,907
E 49 4,881
5 4
2 485
& 438 4,79
% 48 4,76 476 4,77
[=]
G475
a7
4,65
20.000 40.000 60.000 80,000 100,000

Request

B[P Hash EWRR

Gambar 13. Response time result

Packet Loss

0,01600
0,01400

= 001200

2 0,01000

— 0,00800

% 0,00600

& 0,00400 I I I I
0,00200 l I
0,00000

20.000 40.000 60,000 80.000 100.000
mIPHash 0,00336 0,00466 0,00576 0,00693 0,01
mWRR 0,00568 0,00591 0,00017 0,01364 |0,004272727
Request

®|P Hash ® WRR

Gambar 14. Packet loss result

Result and analysis of Packet loss

In figure 14 shows that IP Hash give less packet loss in majority request.
But in 100.000 request it shows that IP gives bigger packet loss, this
indicates that when IP Hash get bigger request it cause load imblance
in the server and can cause network congestion. Based on the packet
loss standarization refer to section 3.6, it shows both algorithm gives
beter packet.

Result and analysis of Request distribution IP Hash and WRR

In figure 15 shows the result of request distribution of IP Hash algorithm
and WRR after sending 20.000 request to 3 servers. It Shows that IP
Hash cause imbalance in 3 of the servers. Server 1 receives fair load,

IP Hash and WRR request distribution
6850

6801

£ 6800
=
i 6750
£ 6700 6669 6667 6666 6667
2 6650
7
2 6600
o
2 6550 6530

6500 |

IP Hash WRR

20.000 Request

EServer | ®Server2 ®Server3

Gambar 15. IP Hash and WRR 20.000 request distribution result

[P Hash fairness Index

1,006000 0,999969 0,999956

0,999950

0,999900 0,999871

0,999850 0,999831
‘g 0,999800
= 0,999750 - 0,999725

0,999700

0,999650 I

0,999600

20.000 40.000 60.000 80.000 100.000

Request

Gambar 16. IP Hash fairness index result

server 2 receive lower load, while server 3 receive higher load than
other 2 server. When using WRR algorithm it shows that WRR receive
equal load and able to mitigate load imblance cause by IP Hash algo-
rithm. Result of request distribution of IP Hash and WRR for 40.000,
60.000, 80.000 and 100.000 request can be seen in attachmet section.
The result shows a similar pattern as discussed before; the result shows
that IP Hash cause imbalance in some servers while WRR distributes
requests to the 3 servers equally.

Jain fairness index IP Hash and WRR

Based on the request distribution discussed before, the fairness index
can be calculated from request distributed to 3 servers. Index value for
fairness index is between 0 to 1,1 index value meaning that all servers
receive request equally while below 1 meaning that some servers get
underloaded or overloaded. In figure 16 shows the fairness index value
of IP Hash for each request. IP Hash index is below 1 because some
servers receive unequal requests.

The fairness index value for WRR is 1 for all the requests as shown
in figure 17, this is because WRR can mitigate load imbalances and
distribute request equally for every server.

Conclusion

The load balancing algorithm was performed on multiple servers. The
results showed that the WRR algorithm performed better in throughput
parameter, with a 13% higher percentage than the IP Hash. This is
because WRR uniformly distributes the requests across servers, pre-
venting overloading in server and give optimal performance in handling
requests. The response time performance of the IP Hash algorithm

WRR fariness index

Index
[any

! 1 1 1 i
, 1 B 1 N1 1§
20.000 40.000 60.000 80.000 100.000

Request

B WRR

Gambar 17. WRR fairness index result

shows 2% less response time compared to the WRR algorithm. Packet
loss is also analyzed, and the result shows that the IP Hash algorithm
caused imbalance in some servers, while the WRR algorithm distri-
buted requests equally to all servers. And the last test parameter is
fairness index, for the IP Hash the value is below 1 and is WRR algori-
thms is 1 for all requests, meaning that WRR was able to mitigate load
imbalances and distribute requests equally for all servers.

Daftar Pustaka

1.

What is Layer 4 Load Balancing? — Avi Networks; 2024. Acces-
sed: Sep. 08, 2024. Available from: https://avinetworks.com/
glossary/layer-4-loadbalancing/.

Kfoury EF, Crichigno J, Bou-Harb E. An Exhaustive Survey on
P4 Programmable Data Plane Switches: Taxonomy, Applications,
Challenges, and Future Trends. IEEE Access. 2021;9:87094-155.
Barbette T, Wu E, Kostic D, Maguire GQ, Papadimitratos P, Chiesa
M. Cheetah: A High-Speed Programmable Load-Balancer Frame-
work With Guaranteed Per-Connection Consistency. |EEE/ACM
Transactions on Networking. 2022 Feb;30(1).

Hosseini SM, Jahangir AH, Daraby S. Session-persistent Load
Balancing for Clustered Web Servers without Acting as a Reverse-
proxy. In: 2021 17th International Conference on Network and
Service Management (CNSM). Izmir, Turkey: IEEE; 2021. p. 360-4.
Almhanna MS, Murshedi TA, AlTuraihi FS, Almuttairi RM, Wankar
R. Dynamic Weight Assignment with Least Connection Approach
for Enhanced Load Balancing in Distributed Systems; 2023.
Persistence methods available in F5 BIG-IP; 2024. Accessed: Aug.
24, 2024. Available from: https://my.f5.com/manage/s/article/
K26898044.

Using nginx as HTTP load balancer; 2023. Accessed: Jun.
08, 2023. Available from: http://nginx.org/en/docs/http/
load balancing.html.

Suwandika IPA, Nugroho MA, Abdurahman M. Increasing SDN
Network Performance Using Load Balancing Scheme on Web

20.

21.

. Using nginx as HTTP load balancer; 2024.

. Comparing Layer 4,

Layer-4 Load Balancer... | 75

Server. In: 2018 6th International Conference on Information and
Communication Technology (IColCT). Bandung: IEEE; 2018. p.
459-63.

Hsu SJ, Ke CH, Chen YS, Hung CF, Lo YW. Design and Per-
formance Evaluation of a P4 based Load Balancer. In: 2019 8th
International Conference on Innovation, Communication and Engi-
neering (ICICE). Zhengzhou, Henan Province, China: IEEE; 2019.
p. 149-52.

Accessed: Aug.
27, 2024. Available from: https://nginx.org/en/docs/http/
load-balancing.html.

. Michel O, Bifulco R, Rétvari G, Schmid S. The Programmable Data

Plane: Abstractions, Architectures, Algorithms, and Applications.
ACM Computing Surveys. 2022 May;54(4).

. p4lang contributors. p4lang/p4c; 2024. C++. Accessed: Aug. 09,

2024. Available from: https://github.com/p4lang/p4c.

. Amru GS, Prabowo S, Nugroho MA. Analisis Performansi Load

Balancing menggunakan Algoritma Round Robin dan Weighted
Round Robin pada P4-Programmable Switch; 2022.

. Baihagi MR, Negara RM, Tulloh R. Analysis of Load Balancing

Performance using Round Robin and IP Hash Algorithm on P4. In:
2022 5th International Seminar on Research of Information Techno-
logy and Intelligent Systems (ISRITI). Yogyakarta, Indonesia: IEEE;
2022. p. 93-8.

. Miao R, Zeng H, Kim C, Lee J, Yu M. SilkRoad: Making Stateful

Layer-4 Load Balancing Fast and Cheap Using Switching ASICs.
In: Proceedings of the Conference of the ACM Special Interest
Group on Data Communication. Los Angeles, CA, USA: ACM;
2017. p. 15-28.

. Olteanu V, Agache A, Voinescu A, Raiciu C. Stateless Datacenter

Load-balancing with Beamer. In: Proceedings of the USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI).
USENIX; 2020. .

. Brito JA, Moreno JI, Contreras LM, Alvarez-Campana M, Bla-

nco Caamano M. Programmable Data Plane Applications in 5G
and Beyond Architectures: A Systematic Review. Sensors. 2023
Aug;23(15):6955.

. Kaur S, Kumar K, Aggarwal N. A review on P4-Programmable

data planes: Architecture, research efforts, and future directions.
Computer Communications. 2021 Mar;170:109-29.

Layer 7, and GSLB techniques;
2024. Accessed: Sep. 10, 2024. Available from:
https://wuw.loadbalancer.org/blog/comparing-layer-4-
layer-7-and-gslb-load-balancingtechniques/.

Y.1541: Network performance objectives for IP-based services;
2024. Accessed: Sep. 10, 2024. Available from: https://
www.itu.int/rec/T-REC-Y.1541.

Jain R, Durresi A, Babic G. Throughput Fairness Index: An
Explanation. Technical Report. 2005.

https://avinetworks.com/glossary/layer-4-loadbalancing/
https://avinetworks.com/glossary/layer-4-loadbalancing/
https://my.f5.com/manage/s/article/K26898044
https://my.f5.com/manage/s/article/K26898044
http://nginx.org/en/docs/http/load_balancing.html
http://nginx.org/en/docs/http/load_balancing.html
https://nginx.org/en/docs/http/load_balancing.html
https://nginx.org/en/docs/http/load_balancing.html
https://github.com/p4lang/p4c
https://www.loadbalancer.org/blog/comparing-layer-4-layer-7-and-gslb-load-balancingtechniques/
https://www.loadbalancer.org/blog/comparing-layer-4-layer-7-and-gslb-load-balancingtechniques/
https://www.itu.int/rec/T-REC-Y.1541
https://www.itu.int/rec/T-REC-Y.1541

	Introduction
	Problem statement
	Purpose

	Related Study
	Layer-4 Load balancing in data center
	Layer-4 load balancing.
	IP Hash
	WRR
	Programmable data plane
	Programmable Switch
	Programming protocol-independent packet processors (P4)

	System Design
	Topology
	IP Hash load balancing
	Weighted round robin load balancing
	Block diagram of system implementation
	System specifications
	Test parameters
	Test scenario

	Evaluation
	Result and analysis of Throughput
	Result and analysis of response time
	Result and analysis of Packet loss
	Result and analysis of Request distribution IP Hash and WRR
	Jain fairness index IP Hash and WRR

	Conclusion

