Detection of Nutrition Deficiency in Iceberg Lettuce Plants Using Autoencoder and Multilayer Perceptron Methods

person Sadra Din Azizi Muhammad Universitas Islam Sultan Agung
person Sam Farisa Chaerul Haviana Universitas Islam Sultan Agung
subjectAbstract

Iceberg lettuce was selected as the research object because its leaves show clear visual responses to nutrient deficiencies, while visual inspection methods commonly used by small- and medium-scale growers remain subjective. This study aims to develop an automated detection system for nutrient deficiency using an autoencoder combined with a Multilayer Perceptron (MLP). The dataset was sourced from Kaggle and categorized into four classes: Nitrogen, Phosphorus, Potassium, and Healthy. The preprocessing stage included converting images from BGR to HSV, resizing to 128×128 pixels, normalizing to 0–1, and applying an 80:20 train–test split. Feature extraction was performed using the autoencoder (encoder, bottleneck, decoder), while classification was carried out using the MLP (input, hidden, and output layers). Evaluation using a confusion matrix showed an accuracy of 86%, precision of 89%, recall of 87%, and an F1-score of 88%. The system has been implemented in a user-friendly web application that allows users to upload images and obtain detection results instantly. In conclusion, integrating autoencoder and MLP proved effective for automated nutrient deficiency detection in iceberg lettuce, providing a more objective alternative to conventional visual diagnosis.

labelKeywords:
Lettuce Iceberg, Image Processing, Autoencoder, Multilayer Perceptron
quick_reference_allReferences

[1] J. Hong dkk., “Evaluation of the Effects of Nitrogen, Phosphorus, and Potassium Applications on the Growth, Yield, and Quality of Lettuce (Lactuca sativa L.),” Agronomy, vol. 12, no. 10, 2022, doi: 10.3390/agronomy12102477.

[2] K. Vought dkk., “Dynamics of micro and macronutrients in a hydroponic nutrient film technique system under lettuce cultivation,” Heliyon, vol. 10, no. 11, hal. e32316, 2024, doi: 10.1016/j.heliyon.2024.e32316.

[3] D. Armita, W. Wahdaniyah, H. Hafsan, dan H. Al Amanah, “Diagnosis Visual Masalah Unsur Hara Esensial Pada Berbagai Jenis Tanaman,” Teknosains Media Inf. Sains dan Teknol., vol. 16, no. 1, hal. 139–150, 2022, doi: 10.24252/teknosains.v16i1.28639.

[4] J. Xie, S. Lv, X. Zhang, W. Song, X. Liu, dan Y. Lu, “Exploring Nutrient Deficiencies in Lettuce Crops: Utilizing Advanced Multidimensional Image Analysis for Precision Diagnosis,” Sensors, vol. 25, no. 7, 2025, doi: 10.3390/s25071957.

[5] D. A. P. Oktavia, S. Rizal, dan N. K. C. Pratiwi, “Klasifikasi Gejala Defisiensi Nutrisi Pada Tanaman Padi Menggunakan CNN Dengan Arsitektur Resnet-50,” e-Proceeding Eng., vol. 8, no. 6, hal. 3171–3175, 2022.

[6] P. Bedi, P. Gole, dan S. Marwaha, “PDSE-Lite: lightweight framework for plant disease severity estimation based on Convolutional Autoencoder and Few-Shot Learning,” Front. Plant Sci., vol. 14, no. January, hal. 1–20, 2023, doi: 10.3389/fpls.2023.1319894.

[7] U. naz dan M. M. Malik, “A Comprehensive Review of Plant Disease Detection Using Deep Learning,” Univ. Wah J. Comput. Sci., vol. 5, hal. 1–12, 2023.

[8] S. Kolhar, J. Jagtap, dan R. Shastri, “Deep Neural Networks for Classifying Nutrient Deficiencies in Rice Plants Using Leaf Images,” Int. J. Comput. Digit. Syst., vol. 16, no. 1, hal. 305–314, 2024, doi: 10.12785/ijcds/160124.

[9] I. Pacal dkk., “A systematic review of deep learning techniques for plant diseases,” Artif. Intell. Rev., vol. 57, no. 11, 2024, doi: 10.1007/s10462-024-10944-7.

[10] J. Sikati dan J. C. Nouaze, “YOLO-NPK: A Lightweight Deep Network for Lettuce Nutrient Deficiency Classification Based on Improved YOLOv8 Nano †,” Eng. Proc., vol. 58, no. 1, hal. 0–7, 2023, doi: 10.3390/ecsa-10-16256.

[11] D. Djidonou dan D. I. Leskovar, “Seasonal changes in growth, nitrogen nutrition, and yield of hydroponic lettuce,” HortScience, vol. 54, no. 1, hal. 76–85, 2019, doi: 10.21273/HORTSCI13567-18.

[12] P. Pandey, P. Veazie, B. Whipker, dan S. Young, “Predicting foliar nutrient concentrations and nutrient deficiencies of hydroponic lettuce using hyperspectral imaging,” Biosyst. Eng., vol. 230, hal. 458–469, 2023, doi: 10.1016/j.biosystemseng.2023.05.005.

[13] M. F. Taha dkk., “Using Deep Convolutional Neural Network for Image-Based Diagnosis of Nutrient Deficiencies in Plants Grown in Aquaponics,” Chemosensors, vol. 10, no. 2, hal. 1–23, 2022, doi: 10.3390/chemosensors10020045.

[14] J. Kusuma, Rubianto, R. Rosnelly, Hartono, dan B. H. Hayadi, “Klasifikasi Penyakit Daun Pada Tanaman Jagung Menggunakan Algoritma Support Vector Machine, K-Nearest Neighbors dan Multilayer Perceptron,” J. Appl. Comput. Sci. Technol., vol. 4, no. 1, hal. 1–6, 2023, doi: 10.52158/jacost.v4i1.484.

[15] S. Natarajan, P. Chakrabarti, dan M. Margala, “Robust diagnosis and meta visualizations of plant diseases through deep neural architecture with explainable AI,” Sci. Rep., vol. 14, no. 1, hal. 1–14, 2024, doi: 10.1038/s41598-024-64601-8.

licenseLicense

Copyright (c) 2025 Journal of Software Engineering and Multimedia (JASMED)

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

format_quoteHow to Citefile_copyCopy
Muhammad, S. D. A., & Haviana, S. F. C. (2025). Detection of Nutrition Deficiency in Iceberg Lettuce Plants Using Autoencoder and Multilayer Perceptron Methods. Journal of Software Engineering and Multimedia (JASMED), 3(2), 86–100. https://doi.org/10.20895/jasmed.v3i2.10130

downloadDownloadable Citation

Tools

grammarly

  

Statics