RANCANG BANGUN ANTENA MIKROSTRIP RECTANGULAR DENGAN METODE FRACTAL SIERPINSKI UNTUK TEKNOLOGI LONG TERM EVOLUTION 2300 MHz

Authors

  • Eka Setia Nugraha Institut Teknologi Telkom Purwokerto
  • Ilham Januar Ramdhani
  • Petrus Kerowe Goran

DOI:

https://doi.org/10.25124/jett.v8i1.3750

Keywords:

Microstrip Antenna, Sierpinski fractal, LTE, MIMO

Abstract

The technology currently developing is Long Term Evolution (LTE) which works at the frequencies of 1800 MHz, 2100 MHz, and 2300 MHz. To support LTE technology, an antenna design that conforms to LTE specifications is needed, one of which is a microstrip antenna that supports Multiple Input Multiple Output (MIMO), which in this type allows it to use more than one antenna, both on the transmitter and receiver ( receiver). Because it is possible to use more than one antenna. In this study, using a MIMO microstrip antenna model with the fractal sierpinski method which aims to increase the value of the bandwidth so that it can perform a fast data transmission. In this antenna, the value of the return loss parameter is obtained with a value of -12.05 dB for antenna 1 and -16.75 dB for antenna 2 measurement results, and in the simulation results produce a value of -14.88 dB, for the impedance value the antenna measurement value is obtained. 1, namely 32.33 Ohm and antenna 2 43.4 Ohm, for the simulation it produces a value of 50 Ohm, for the gain during the simulation it produces a value of 5.084 dB and the measurement results in a value of 2.7 dB, for the simulation bandwidth value is 20 MHz, and at When the measurement of antenna 1 yields a value of 18 MHz and antenna 2 is 15 MHz, and the radiation pattern for the simulation and measurement results shows that the radiation pattern is unidirectional.

Downloads

Download data is not yet available.

References

M. A. Affandi, E. S. Nugraha, and D. Alia, “Perancangan Antena Mikrostrip Mimo2x2 Array Rectangular Patch Dengan I-Slot Untuk Aplikasi Lte,” pp. 326–331, 2018.

kraus D. john and marhefka J. Ronald, Antennas For All Applications, 3 rd. New York, 2002.

A. Pandey, Practical Microstrip and Printed Antenna Design. London, 2019.

Y. J. Sung, “Bandwidth enhancement of a wide slot using fractal-shaped sierpinski,” IEEE Trans. Antennas Propag., vol. 59, no. 8, pp. 3076–3079, 2011.

H. K. Hirway, “Comparison of Low Profile Sierpinski and Koch Fractal Antenna for Wireless Application,” 2018 Int. Conf. Curr. Trends Towar. Converging Technol., pp. 1–6, 2018.

N. Lu, “Sierpinski Carpet Fractal AntennaIn Third Iteration,” no. 2, pp. 2–5, 2013.

N. Popržen and M. Ga?anovi?, “Fractal Antennas?: Design , Characteristics and Application,” Fractals An Interdiscip. J. Complex Geom. Nat.

F. Fauzi, G. S. Harly, and H. Hs, “Analisis Penerapan Teknologi Jaringan Lte 4G Di Indonesia,” Maj. ilmilah UNIKOM, vol. 10, no. 2, pp. 281–290, 2012.

N. Wahyu, A. Setiawan, H. Vidyaningtyas, F. T. Elektro, and U. Telkom, “Optimasi Layanan Data Pada Jaringan Lte Dengan Genex Assistant Di Delanggu Klaten Optimization of Data Service Lte Network With Genex Assistant in Delanggu Klaten,” vol. 4, no. 3, pp. 3532–3539, 2017.

E. Wahyudi, E. S. Nugraha, and T. S. Munthe, “Antena Mikrostrip Multiple Input Multiple Output dengan Patch Rectangular pada Long Term Evolution,” pp. 15–17, 2017.

R. Emilia and M. Mujirudin, “Sistem Mimo dan Aplikasi Penggunaannya,” Rekayasa Teknol., vol. 6, no. 6, pp. 14–20, 2013.

A. S. Nugraha and Y. Christyono, “Perancangan dan Analisa Antena Mikrostrip dengan Frekuensi 850 MHz untuk Aplikasi Praktikum Antena,” vol. 13, no. 1, pp. 39–45, 2011.

CONSTANTINE A. BALANIS, ANTENNA THEORY Analysis and Design. NEW YORK: John Wiley & Sons, Inc., 1982.

D. M. Pozar, Microwave Engineering. John Wiley & Sons, Inc.2012.

D. E. Bockelman, W. R. Eisenstadt, and S. Member, “Combined Differential and Common-Mode Scattering Parameters:,” vol. 43, no. 7, 1995.

Published

2021-07-30

Issue

Section

TRANSMISSION ENGINEERING