ESP32-CAM-BASED FACE RECOGNITION FOR MOTORCYCLE LOCK SYSTEM

  • Audianto Putra Malangi Susilo Telkom University
  • Denny Darlis Telkom University
  • Dwi Andi Nurmantris Telkom University

Abstract

In recent years, cases of motor vehicle theft that occurred in Indonesia, especially in metropolitan cities, are indicated by a high crime rate. Various efforts have been made to suppress this curanmor number for example by using a keyless system on motors used in high-end motors. The need for this system is increasing along with the vigilance of motorcycle owners for the safety of their personal vehicles. Facial recognition-based motor keys using the ESP32-CAM module are designed as an alternative to the safety system on motorcycles equipped with relays as switches to disconnect and connect the motorcycle's electricity. The working system designed on this tool uses facial recognition technology that can distinguish the face of the owner of the motorcycle from the one that is not so that the listed and recognized face will connect and disconnect the electrical current of the motorcycle so that the motorcycle can be started and vice versa. From the implementation and testing process with 40 trials, the tool can distinguish the face of the owner of the motor with the face that is not the owner of the motor as much as 80% for the correct condition and 17.5% for the wrong condition.

Downloads

Download data is not yet available.

References

[1] Juwariyah Tatik, Dewi Alina Cynthia, (2017),"RANCANG BANGUN SISTEM KEAMANAN SEPEDA MOTOR DENGAN SENSOR SIDIK JARI," Universitas Pembangunan Nasional “Veteran” Jakarta, Jakarta Selatan, BINA TEKNIKA,Volume 13 Nomor 2, Edisi Desember 2017 [1:p. 223].
[2] Rahmat Tullah, Nurmaesah Nunung, Agami Tegar Cahyo, (2019), "Sistem Cerdas Keamanan Kendaraan Sepeda Motor Dengan Fingerprint Berbasis Mirkrokontroler," STMIK Bina Sarana Global Banten, Seminar Nasional APTIKOM (SEMNASTIK) 2019, [1:p. 38].
[3] Susanto Bekti Maryuni, Purnomo Fendik Eko, Fahmi M.Faiq Ilman, (2017), "Sistem Keamanan Pintu Berbasis Pengenalan Wajah Menggunakan Metode Fisherface," Politeknik Negeri Jember, Jurnal Ilmiah INOVASI, vol. 17, no. 1, [1:p. 43].
[4] Wijayanto Bagus Septian Aditya, Utaminingrum Fitri, Arwani Issa, (2019), "Face Recognition Untuk Sistem Pengaman Rumah Menggunakan Metode HOG dan KNN Berbasis Embedded," Universitas Brawijaya, Jurnal Pengembangan Teknologi Informasi dan Ilmu Komputer, vol. 3, no. 3,Maret 2019, [1:p. 2775].
[5] Arhandi Putra Prima, Rosiani Ulla Delfana, Prasetyawati Atika, Choirina Priska, (2018), "SISTEM PENGENALAN WAJAH UNTUK KEAMANAN FOLDER MENGGUNAKAN METODE TRIANGLE FACE," Politeknik Negeri Malang, Jurnal Informatika Polinema, vol. 4, no. 4, Agustus 2018, [1:p. 269].
[6] Ranjan Rajeev, Bansal Ankal, Zheng Jingxiao, Xu Hongyu, Gleason Joshua, (2015), "A Fast and Accurate System for Face Detection, Identi?cation, and Veri?catio," University of Maryland, College Park, JOURNAL OF LATEX CLASS FILES, vol. 14, No. 08 August 2015, [4:p. 2].
[7] Kipeng Zhang, Zhang Zhanpeng, Li Zhifeng, (2016), "Joint Face Detection and Alignment using Multi-task Cascaded Convolutional Networks," [4:p. 2].
[8] R. Gradill, (2020), "Multi-task Cascaded Convolutional Networks (MTCNN) untuk Deteksi Wajah dan Penjajaran Landmark Wajah," medium.com, 28 Jul 2020. [Online]. Available: https://medium.com/@iselagradilla94/multi-task-cascaded-convolutional-networks-mtcnn-for-face-detection-and-facial-landmark-alignment-7c21e8007923. [Accessed 1 February 2021],.
[9] Saputra Aldiansyah Fahmi, Darujati Cahyo, (2020), " Sistem Presensi Mahasiswa Berbasis Realtime Kamera Metode Klasifikasi Haar," Universitas Narotama Surabaya, Jl. Arief Rachman Hakim 51, 60117, Indonesia, Jurnal Teknik Elektro dan Komputer, vol. 9, No. 3 September-Desember 2020, [5:p. 138].
[10] Nugraha Beni Setya, (2005)," SISTEM STARTER", Yogyakarta: Fakultas Teknik UNY Juni 2005, Modul Sistem Perencanaan Penyusunan Program dan Penganggaran (SP4) Jurusan Pendidikan Teknik Otomotif, [6:p.11].
Published
2021-12-29
How to Cite
MALANGI SUSILO, Audianto Putra; DARLIS, Denny; NURMANTRIS, Dwi Andi. ESP32-CAM-BASED FACE RECOGNITION FOR MOTORCYCLE LOCK SYSTEM. Jurnal Elektro dan Telekomunikasi Terapan (e-Journal), [S.l.], v. 8, n. 2, p. 1091 - 1103, dec. 2021. ISSN 2442-4404. Available at: <//journals.telkomuniversity.ac.id/jett/article/view/4199>. Date accessed: 24 jan. 2022. doi: https://doi.org/10.25124/jett.v8i2.4199.
Section
ELECTRONICS