ANALISIS PENERAPAN PRINCIPAL COMPONENT ANALYSIS (PCA) PADA DETEKSI KECURANGAN KARTU KREDIT MENGGUNAKAN RANDOM FOREST
DOI:
https://doi.org/10.25124/jett.v9i1.5019Abstract
Pandemi COVID-19 yang menjangkiti hampir seluruh penjuru dunia menyebabkan berbagai perubahan hampir pada semua bidang. Demi mencegah penyebarannya, banyak negara yang menerapkan protokol ketat yang membatasi mobilitas warganya, yang kemudian menyebabkan peralihan dalam dunia perdagangan dimana meningkatnya transaksi secara online. Seiring dengan meningkatnya transaksi secara online, diikuti pula dengan meningkatnya penggunaan kartu kredit yang memang memudahkan, tetapi hal tersebut juga diikuti oleh meningkatnya ancaman keamanan. Salah satu ancaman yang mengintai adalah penggunaan kartu kredit secara ilegal oleh orang lain yang sangat merugikan baik bagi penggunanya maupun penyedia layanan kartu kredit sehingga diperlukan langkah untuk mendeteksi transaksi yang dicurigai sebagai kecurangan. Penelitian ini bertujuan untuk membangun suatu model yang mampu melakukan deteksi potensi kecurangan penggunaan kartu kredit. Penelitian ini menggunakan algoritma Random Forest yang kemudian dikombinasikan dengan SMOTE dan PCA. Dari beberapa skenario yang dilakukan, kemudian dilakukan analisa performa model dari masing-masing metode kombinasi. Hasil penelitian ini menunjukkan bahwa model dengan algoritma dasar menghasilkan nilai recall yang lebih tinggi, sedangkan model dengan penerapan PCA menghasilkan nilai precision yang jauh lebih baik
Downloads
References
Cindy Mutia Annur, “BI: Nilai Transaksi Kartu Kredit RI Tumbuh 10,39% pada Desember 2021 | Databoks.” http://databoks.katadata.co.id/datapublish/2022/01/31/bi-nilai-transaksi-kartu-kredit-ri-tumbuh-1039-pada-desember-2021 (accessed Mar. 03, 2022).
“Credit Card Fraud 2021 Annual Report: Prevalence, Awareness, and Prevention - Security.org.” https://www.security.org/digital-safety/credit-card-fraud-report/ (accessed Mar. 03, 2022).
I. PSYCHOULA, A. Gutmann, P. Mainali, S. H. Lee, P. Dunphy, and F. Petitcolas, “Explainable Machine Learning for Fraud Detection,” Computer (Long. Beach. Calif)., vol. 54, no. 10, pp. 49–59, Oct. 2021, doi: 10.1109/MC.2021.3081249.
Y. Yazid and A. Fiananta, “MENDETEKSI KECURANGAN PADA TRANSAKSI KARTU KREDIT UNTUK VERIFIKASI TRANSAKSI MENGGUNAKAN METODE SVM,” Indones. J. Appl. Informatics, vol. 1, no. 2, pp. 61–66, May 2017, doi: 10.20961/IJAI.V1I2.14378.
L. Breiman, “Random forests,” Mach. Learn., 2001, doi: 10.1023/A:1010933404324.
Y. Azhar, G. A. Mahesa, and M. C. Mustaqim, “Prediction of hotel bookings cancellation using hyperparameter optimization on Random Forest algorithm,” J. Teknol. dan Sist. Komput., vol. 9, no. 1, pp. 15–21, Jan. 2021, doi: 10.14710/jtsiskom.2020.13790.
R. A. Haristu, “Penerapan metode Random Forest untuk prediksi win ratio pemain player Unknown Battleground,” 2019.
Muhtadi, “Penerapan Principal Component Analysis (PCA) dalam Algoritma K-Means untuk Menentukan Centroid pada Clustering,” Konstanta, vol. 1, no. 1. pp. 122–142, Jul. 17, 2017, Accessed: Dec. 25, 2021. [Online]. Available: https://journal.iainkudus.ac.id/index.php/Konstanta/article/view/3543.
K. Chen, “Indirect PCA Dimensionality Reduction Based Machine Learning Algorithms for Power System Transient Stability Assessment,” 2019 IEEE PES Innov. Smart Grid Technol. Asia, ISGT 2019, pp. 4175–4179, May 2019, doi: 10.1109/ISGT-ASIA.2019.8881370.
S. Sehgal, H. Singh, M. Agarwal, V. Bhasker, and Shantanu, “Data analysis using principal component analysis,” 2014 Int. Conf. Med. Imaging, m-Health Emerg. Commun. Syst. MedCom 2014, pp. 45–48, 2014, doi: 10.1109/MEDCOM.2014.7005973.
H. Hairani, K. E. Saputro, and S. Fadli, “K-means-SMOTE untuk menangani ketidakseimbangan kelas dalam klasifikasi penyakit diabetes dengan C4.5, SVM, dan naive Bayes,” J. Teknol. dan Sist. Komput., vol. 8, no. 2, pp. 89–93, Apr. 2020, doi: 10.14710/JTSISKOM.8.2.2020.89-93.
M. Mustaqim, B. Warsito, and B. Surarso, “Kombinasi Synthetic Minority Oversampling Technique (SMOTE) dan Neural Network Backpropagation untuk menangani data tidak seimbang pada prediksi pemakaian alat kontrasepsi implan,” Regist. J. Ilm. Teknol. Sist. Inf., vol. 5, no. 2, pp. 116–127, Jul. 2019, doi: 10.26594/register.v5i2.1705.
R. Siringoringo, “KLASIFIKASI DATA TIDAK SEIMBANG MENGGUNAKAN ALGORITMA SMOTE DAN k-NEAREST NEIGHBOR,” J. Inf. Syst. Dev., vol. 3, no. 1, pp. 2528–5114, Feb. 2018, Accessed: Dec. 25, 2021. [Online]. Available: https://ejournal.medan.uph.edu/index.php/isd/article/view/177.
14611240 Julia Widiastuti, “KLASIFIKASI PEMBIAYAAN WARUNG MIKRO MENGGUNAKAN METODE RANDOM FOREST DENGAN TEKNIK SAMPLING KELAS IMBALANCED (Studi Kasus: Data Nasabah Pembiayaan Warung Mikro Bank Syariah Mandiri KC Jambi),” May 2018, Accessed: Jan. 04, 2022. [Online]. Available: https://dspace.uii.ac.id/handle/123456789/7690.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright Notice
An author who publishes in the Jurnal Elektro dan Telekomunikasi Terapan agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-NonCommercial 4.0 International License. here: http://creativecommons.org/licenses/by-nc/4.0/.
Privacy Statement
The names and email addresses entered in this journal site will be used exclusively for the stated purposes of this journal and will not be made available for any other purpose or to any other party.