PENGEMBANGAN SISTEM REKOGNISI AKTIVITAS DAN PREDIKSI JATUH PADA LANSIA MENGGUNAKAN SENSOR IMU

Authors

  • Husneni Mukhtar Telkom University

DOI:

https://doi.org/10.25124/jett.v11i1.7299

Keywords:

Fall prediction, HAR, IMU, elderly, machine learning

Abstract

Urgensi pengembangan suatu sistem pengenalan aktivitas lansia serta memprediksi kemungkinan terjadinya jatuh menjadi prioritas dalam menghadapi total populasi lansia yang telah mencapai 11,34% di tahun 2020 dan diproyeksikan meningkat menjadi seperlima populasi Indonesia pada tahun 2045. Keluarga yang hidup bersama dengan lansia memiliki keterbatasan dalam memantau dan menjaga lansia, ditambah lagi dengan kekhawatiran akan kemungkinan terjadinya jatuh. Bertujuan untuk membantu keluarga lansia dalam memonitor aktivitas lansia maka dikembangkanlah suatu sistem pemantauan aktivitas lansia. Sedangkan untuk mengurangi risiko jatuh, sebuah alat yang dapat dikenakan pada lansia dilengkapi dengan mode peringatan berupa getaran yang akan aktif sesaat diprediksi lansia akan terjatuh.  Sistem pemantauan aktivitas lansia menggunakan metode human activity recognition (HAR) dengan model XGBoost dan 6 fitur sedangkan prediksi jatuh diambil dari deteksi sensor IMU menggunakan threshold dari nilai mutlak terbesar pada akselerometer di sumbu . Performa yang didapat dari metode tersebut adalah akurasi sebesar 90% untuk HAR, 95% untuk prediksi jatuh, dan 83,3% untuk hasil integrasi keduanya.

Downloads

Download data is not yet available.

References

Badan Pusat Statistik. 2022. Susenas. Badan Pusat Statistik, Kemensos RI.

Morse, J. M. 2002. Enhancing the safety of hospitalization by reducing patient falls. Am. J. Infect. Control. 30, 6, pp. 376–380. doi: 10.1067/mic.2002.125808.

Vaishya, R dan Vaish, A. 2020. Falls in Older Adults are Serious,” Indian J. Orthop. 54, 1, pp. 69–74. doi: 10.1007/s43465-019-00037-x.

Rusminingsih, E, Marwanti, M, Sawitri, E dan Cahyani, A.D. 2021. Pengaruh Latihan Keseimbangan (Forward Stepping) Terhadap Risiko Jatuh Pada Lansia. Urecol Journal. Part C: Health Sciences. 1, 1, pp. 22–28. doi: 10.53017/ujhs.43.

Badan Pusat Statistik. 2021. Statistik Penduduk Lanjut Usia 2021. Badan Pusat Statistik.

Fauzi, M. A. G, Mukhtar, H and Rahmawati, D. 2021. Assessment of Postural Stability Using an Affordable and Simple Force Platform. IEEE 7th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Bandung, Indonesia, pp. 252-256.

Susanti, H., Mukhtar, H., Rahmawati, D., Arik Geraldy Fauzi, M. dan Setiadi, S. 2022. Pengukuran Somatotype dan Center of Pressure (CoP) dengan Force Platform untuk Mengetahui Pengaruh Morfologi Tubuh terhadap Keseimbangan Postur Berdiri. Jurnal Otomasi Kontrol dan Instrumentasi. 14, 2, 87-99.

Lo, PY, Su, BL, You, YL, Yen, CW, Wang, ST and Guo, LY. 2022. Measuring the Reliability of Postural Sway Measurements for a Static Standing Task: The Effect of Age. Frontiers in Physiology J. vol. 13.

B?aszczyk, JW, Cie?li?ska-?wider, J. 2019. Directional Measures of Postural Sway Applied to the Diagnostic of Postural Stability in the Population of Adult Women with Different Body Mass Index. ARC Journal of Neuroscience. 4,2, pp. 8-19.

Alsubaie, SF. 2020. The Postural Stability Measures Most Related to Aging, Physical Performance, and Cognitive Function in Healthy Adults. Biomed Res Int. 22, 5301534. doi: 10.1155/2020/5301534.

Maudsley-Barton S, Hoon Yap M, Bukowski A, Mills R, McPhee J. 2020. A new process to measure postural sway using a Kinect depth camera during a Sensory Organisation Test. PLoS One.15, 2. doi: 10.1371/journal.pone.0227485

Ren, L dan Peng, Y. 2019. Research of fall detection and fall prevention technologies: A systematic review. IEEE Access. 7, pp. 77702–77722. doi: 10.1109/ACCESS.2019.2922708.

Setiyadi, S, Mukhtar, H, Cahyadi, W.A, Lee, C.C, dan Hong, T.Y. 2022. Human Activity Detection Employing Full-Type 2D Blazepose Estimation with LSTM. IEEE Apwimob Conf Proc., vol. 15, no. 1, hal. 35–44.

Aziz, O, Musngi, M, Park, EJ, Mori, G, dan Robinovitch, SN. 2017. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med. Biol. Eng. Comput. 55, 1, pp. 45–55. doi: 10.1007/s11517-016-1504-y.

Wang, X, Ellul, J and Azzopardi, G. 2020. Elderly Fall Detection Systems: A Literature Survey. Front. Robot. AI. 7. doi: 10.3389/frobt.2020.00071.

Hayat, A, Fernando, M. D, Bhuyan, BP and Tomar, R. 2022. Human Activity Recognition for Elderly People Using Machine and Deep Learning Approaches. Inf. 13, 6, pp. 1–13. doi: 10.3390/info13060275.

Ma’arif, A, Iswanto, Nuryono, AA, Alfian, RI. 2019. Kalman Filter for Noise Reducer on Sensor Readings. Signal and Image Processing Letters. 1, 2, pp. 50-61.

Alfian, R.I, Ma'arif, A, Sunardi. 2021. Noise Reduction in the Accelerometer and Gyroscope Sensor with the Kalman Filter Algorithm. Journal of Robotics and Control. 2,3. https://doi.org/10.18196/jrc.2375.

Cai, S, Hu, Y, Ding, H and Chen, H. 2018. A Noise Reduction Method for MEMS Gyroscope Based on Direct Modeling and Kalman Filter. IFAC-PapersOnLine. 51, 31, pp. 172–176. doi: https://doi.org/10.1016/j.ifacol.2018.10.032.

Rizal, A dan Istiqomah. 2022. Lung Sounds Classification Based on Time Domain Features. J. Ilm. Tek. Elektro Komput. dan Inform. 8, 2, pp. 318.

Friedman, JH. 2002. Stochastic gradient boosting. Comput Stat Data Anal 38:367–378

Chen, T and Guestrin, C. 2016. XGBoost: a scalable tree boosting system. In: KDD ’16 Proceedings of 22nd ACM SIGKDD international conference knowledge discovery and data mining Medication, pp 785–794.

Gunawan, G.I., Silalahi, D.K., Mukhtar, H., Barus, D.T., Rahmawati, D. 2021. Performance Comparison of Classification Algorithms for Locating the Dominant Heel Pain Using Electromyography Signal. Proceedings of the 1st International Conference on Electronics, Biomedical Engineering, and Health Informatics. Lecture Notes in Electrical Engineering, vol 746. Springer, Singapore. https://doi.org/10.1007/978-981-33-6926-9_45.

Jakkula, V. 2011. Tutorial on support vector machine (SVM). School EECS, Washington State University, 1–13.

Ismail, Istiqomah, and Mukhtar, H. 2023. Development Human Activity Recognition for the Elderly Using Inertial Sensor and Statistical Feature. Proceeding of the 3rd International Conference on Electronics, Biomedical Engineering, and Health Informatics. pp. 293–305.

Lin, H. C, Chen, MJ, Lee, CH, Kung, LC, dan Huang, JT. 2023. Fall Recognition Based on an IMU Wearable Device and Fall Verification through a Smart Speaker and the IoT. Sensors. 23, 12, .doi: 10.3390/s23125472.

Feature Extraction Explained - MATLAB & Simulink. 2023. (source: https://www.mathworks.com/discovery/feature-extraction.html.

Nabriya, P. 2020. Feature Engineering on Time-Series Data for Human Activity Recognition. Data Science.

Mohamed, K. S. 2019. The Era of Internet of Things: Towards a Smart World.

Rizal, A., Priharti, W., Rahmawati, D., Mukhtar, H., 2022. Classification of Pulmonary Crackle and Normal Lung Sound Using Spectrogram and Support Vector Machine. JBBBE. https://doi.org/10.4028/p-tf63b7.

Viswanatha, V, Ramachandra, A.C, Prasanna, PR, et.al. 2022. Implementation of Tiny Machine Learning Models on Arduino 33 – BLE for Gesture and Speech Recognition. Journal of Xi'an University of Architecture & Technology. 14,7, pp. 160-169.

M. Fayad et al. 2023. Fall Detection Approaches for Monitoring Elderly HealthCare Using Kinect Technology: A Survey. Appl. Sci. 13, 18. doi: 10.3390/app131810352.

Published

2024-06-10

Most read articles by the same author(s)