Implementasi Model XGBoost untuk Prediksi Jumlah Transaksi dan Total Pendapatan di Jaringan Restoran CV Balibul
DOI:
https://doi.org/10.25124/jnst.v2i2.8750Keywords:
XGBoost, Prediksi Transaksi, Total Pendapatan, Bayesian Optimization, CV BalibulAbstract
Penelitian ini bertujuan untuk menerapkan model XGBoost dalam memprediksi jumlah transaksi dan total pendapatan di
jaringan restoran CV Balibul. Model XGBoost menggunakan teknik gradient tree boosting untuk meningkatkan akurasi
prediksi dari data transaksi harian yang diolah menggunakan library Pandas. Optimisasi parameter untuk model dilakukan
dengan metode Bayesian Optimization, dan evaluasi model menggunakan metrik R2, RMSE, MAPE, dan Pattern Similarity.
Hasil penelitian menunjukkan bahwa model XGBoost dapat memprediksi jumlah transaksi dan total pendapatan dengan
tingkat akurasi yang masuk akal, di mana shift 1 memiliki nilai error yang lebih kecil dibandingkan shift 2.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish in this journal agree to the following rules:
- Authors retain copyright and give the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), with attribution to the journal's initial publication.
- Authors are permitted and recommended to post their work online (such as in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of published work.