Model Klasifikasi berbasis Ekspresi Gen Non-Small Cell Lung Carcinoma (NSCLC) pada Wanita Bukan Perokok Menggunakan Metode Ensemble
DOI:
https://doi.org/10.25124/logic.v1i1.6389Keywords:
chi-square, ensemble, microarray, variance thresholdAbstract
Kanker paru-paru adalah penyebab utama kematian terkait kanker di seluruh dunia dan membawa dampak sosial ekonomi yang signifikan bagi pasien, keluarga, dan masyarakat secara keseluruhan. Dalam diagnosis kanker, klasifikasi berbagai jenis tumor sangat penting. Prediksi akurat dari berbagai jenis tumor memungkinkan untuk pengobatan yang lebih baik dan meminimalkan toksisitas pada pasien. Untuk menganalisis masalah klasifikasi kanker menggunakan data ekspresi gen, untuk pemilihan fitur dan model prediksi. Penelitian ini bertujuan untuk memprediksi NSCLC dengan menerapkan metode ensemble pada data microarray. Penulis menggunakan tiga metode ensemble untuk memprediksi NSCLC, yaitu Random Forest, Adaptive Boosting (AB), dan Extreme Gradient Boosting (XG). Seleksi fitur dilakukan menggunakan variance threshold dan parameter chi-square kemudian dilanjutkan dengan membangun model prediksi menggunakan ensemble. Hasil validasi model terbaik berdasarkan yang terdiagnosis kanker yaitu model AB dengan 10 fitur, XG dengan 10 fitur, dan XG dengan 20 fitur yang menghasilkan nilai accuracy, recall, dan f1-score yang sama berturut-turut yaitu 0.93, 1.00, dan 0.93.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish in this journal agree to the following rules:
- Authors retain copyright and give the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), with attribution to the journal's initial publication.
- Authors are permitted and recommended to post their work online (such as in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of published work.