Implementasi Metode Support Vector Machine (SVM) pada Model Prediksi Rating Obat Berdasarkan Ulasan Pasien
DOI:
https://doi.org/10.25124/logic.v1i1.6410Keywords:
analisis sentimen, Support Vector Machine, TF-IDF, ulasan, obatAbstract
Pesatnya perkembangan internet dan media sosial mengakibatkan membaca ulasan sebelum membeli suatu produk, terutama produk obat menjadi hal yang lumrah. Namun, jumlah ulasan yang banyak dan tersebar mengakibatkan kesulitan dalam melakukan penilaian kualitas produk obat. Oleh karena itu, sistem yang dapat membantu pelanggan dalam menghadapi kendala ini sangat dibutuhkan. Pada pemodelan sistem, digunakan TF-IDF untuk mereduksi fitur dan Support Vector Machine sebagai metode klasifikasi. Dilakukan puka Hyperparameter Tuning untuk meningkatkan performa sistem. Pada penelitian ini didapat bahwa polynomial merupakan kernel SVM yang paling optimal untuk memprediksi rating obat berdasarkan ulasan pasien dengan akurasi mencapai 75.00% dan f-1 score sebesar 74.23%.
Downloads
Downloads
Published
Issue
Section
License
Authors who publish in this journal agree to the following rules:
- Authors retain copyright and give the journal the right of first publication, with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
- Authors may enter separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., posting it to an institutional repository or publishing it in a book), with attribution to the journal's initial publication.
- Authors are permitted and recommended to post their work online (such as in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges as well as earlier and greater citation of published work.