TBC Bacteria Detection in Microscopic Image With Watershed Countur Method

Authors

  • Rodan Hilmi Dawwas Mahasiswa

DOI:

https://doi.org/10.25124/cepat.v1i03.5315

Keywords:

Tuberculosis, Mycrobacterium Tuberculosis, Watershed, Microscopic Image

Abstract

Tuberculosis (TB) is an infectious disease that can be detected using a sputum sample. TB cases in Indonesia have spread throughout the region; the highest cases are in West Java. This problem makes the government do some handling and prevention of TB disease. The Bandung City Health Office (DKKB) conducted a cross-test to diagnose TB using a sputum sample. So in this study, a TB bacteria detection system, namely Mycobacterium Tuberculosis (MTB), will be made in sputum samples and their number to diagnose TB. Detection and calculation of the number of MTB are done by processing the image on the sputum sample using the watershed contour detection method. In this study, sputum sample data were obtained from DKKB. The acquisition of microscopic images at each point of the field of view is carried out using an SLR camera connected directly to the microscope to replace the function of the ocular lens. In this study, the microscopic sputum sample images were classified into positive and negative using the watershed and colorspace methods and were tested on a total of 90 microscopic images. From the system testing results, the system accuracy level is 100%, and the system precision is 100% for the detection of TB diagnosis. The system processing time averaged 5.811 seconds for 90 images used.

Downloads

Download data is not yet available.

References

Kemenkes RI, “Tuberkulosis ( TB ),” Tuberkulosis, vol. 1, no. april, p. 2018, 2018, [Online]. Available: www.kemenkes.go.id

M. Sigit Sarjono, SH, “MAMPUKAH KITA ELIMINASI TBC TAHUN 2035 & INDONESIA BEBAS TBC TAHUN 2050,” BBKPM Bandung, 2019. http://www.bbkpm-bandung.org/

S. Aulia, “KLASIFIKASI TUBERKULOSIS BERBASIS PENGOLAHAN CITRA MIKROSKOPIK,” 2021.

R. Khutlang et al., “Classification of Mycobacterium tuberculosis in Images of ZN-Stained Sputum Smears,” IEEE Trans. Inf. Technol. Biomed., vol. 14, no. 4, pp. 942–957, 2010, [Online]. Available: doi: 10.1109/TITB.2009.2028339.

C. F. F. Costa Filho, P. C. Levy, C. de Matos Xavier, L. B. Mendonça Fujimoto, and M. G. Fernandes Costa, “Automatic identification of tuberculosis mycobacterium,” Rev. Bras. Eng. Biomed., vol. 31, no. 1, pp. 33–43, 2015, doi: 10.1590/2446-4740.0524.

M. I. Shah, S. Mishra, M. Sarkar, and C. Rout, “Automatic detection and classification of tuberculosis bacilli from ZN-stained sputum smear images using watershed segmentation,” pp. 20 (4 .)-20 (4 .), 2016, doi: 10.1049/cp.2016.1459.

D. E. Juliando and A. Setiarini, “Identifikasi Bakteri pada Citra Dahak Penderita Tubercolusis (TBC) Menggunakan Metode Watershed,” JEECAE (Journal Electr. Electron. Control. Automot. Eng., vol. 2, no. 1, pp. 83–88, 2017, doi: 10.32486/jeecae.v2i1.60.

R. Kurniawan, I. Muhimmah, A. Kurniawardhani, and S. Kusumadewi, “Segmentation of Tuberculosis Bacilli Using Watershed Transformation and Fuzzy C-Means,” CommIT (Communication Inf. Technol. J., vol. 13, no. 1, p. 9, 2019, doi: 10.21512/commit.v13i1.5119.

Kemenkes RI, “Peratutan Kementrian Kesehatan No 67 Tahun 2016 Tentang Penanggulangan Tuberkulosis,” Dinas Kesehat., 2016.

H. Mahfuzha, L. Novamizanti, and R. Rahmania, “Deteksi dan Klasifikasi Tuberculosis ( TBC ) berbasis CIELAB dengan Metode K-Means Clustering dan Support Vector Machine( SVM ),” 2020.

R. Asti Werdhani, “PATOFISIOLOGI, DIAGNOSIS, DAN KLAFISIKASI TUBERKULOSIS,” 2014.

E. N. Keliat and A. Abidin, “Diagnosis Tuberkulosis,” pp. 1–23, 2016, [Online]. Available: https://www.google.com/url?sa=t&source=web&rct=j&url=http://repository.usu.ac.id/bitstream/handle/123456789/63515/078%2520.pdf%3Fsequence%3D1%26isAllowed%3Dy&ved=2ahUKEwjFj4zbvsrxAhVNVH0KHfVpACEQFjAAegQIAxAC&usg=AOvVaw12RCYEntfF3yVf9GWEYq3C

T. Irianti, Kuswandi, N. M. Yasin, and R. A. Kusumaningtyas, Anti-Tuberculosis. 2016. doi: 10.2174/1573407210602010105.

D. Fitriani and R. D. Pratiiwi, Buku Ajar TBC,ASKEP, dan Pengawasan Minum Obat Dengan Media Telepon. Tangerang Selatan, 2020.

A. Vyas, S. Yu, and J. Paik, Fundamentals of digital image processing. 2018. doi: 10.1007/978-981-10-7272-7_1.

A. N. Prayuni, L. Novamizanti, R. Rahmania, F. T. Elektro, U. Telkom, and N. Bayes, “Klasifikasi Jenis Tuberculosis ( Tbc ) Berbasis Rgb-Hsv Dengan Metode Naive Bayes,” 2020.

B. Yoga Budi Putranto, W. Hapsari, K. Wijana, and U. Kristen Duta Wacana Yogyakarta, “Segmentasi Warna Citra Dengan Deteksi Warna Hsv Untuk Mendeteksi Objek,” J. Inform., vol. 6, no. 2, pp. 1–14, 2010.

S. Bhahri and Rachmat, “Transformasi Citra Biner Menggunakan,” J. Sist. Inf. dan Teknol. Inf., vol. 7, no. 2, pp. 195–203, 2018.

M. Murinto and H. Agus, “Segmentasi Citra Menggunakan Watershed Dan Itensitas Filtering Sebagai Pre Processing,” Semin. Nas. Inform. 2009, vol. 2009, no. semnasIF, pp. 43–47, 2009, [Online]. Available: http://repository.upnyk.ac.id/207/

D. E. Saputra and A. F. Ibadillah, “Pengolahan Citra Digital Dalam Penentuan Panen Jamur Tiram,” J. Tek. Elektro dan Komput. TRIAC, vol. 6, no. 1, pp. 2–6, 2019, doi: 10.21107/triac.v6i1.4356.

R. S.M.B, “Macam - Macam Mikroskop dan Cara Penggunaan,” vol. 4, no. 2, pp. 42–44, 2008, doi: 10.3139/9783446461260.011.

Downloads

Published

2022-11-24